-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils_baseline.py
589 lines (545 loc) · 30.8 KB
/
utils_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
import os, copy, math
import numpy as np
import json
import torch
import torch.nn.functional as F
from nltk.tokenize import word_tokenize, RegexpTokenizer
from datasets import load_dataset
# np.random.seed(10)
np.random.seed(11)
# INPUT
# train/val/test_set: [[text, "", "positive/negative", label, line_id]]
def get_data_lines_using_sentimentSentence_dataset_for_retriever(train_set, val_set, test_set, splitted_data_dir="./Data/sentiment/splitted/"):
def get_data_lines_from_one_split_set(data_set, data_type):
assert data_type == "train" or data_type == 'eval' or data_type == 'test'
data_write_dir = os.path.join(splitted_data_dir, data_type+"_lines.txt")
processed_data_to_write = []
for cur_id in range(len(data_set)):
assert len(data_set[cur_id]) == 5
cur_e1, cur_rel, cur_e2, cur_label, cur_line_id = data_set[cur_id]
cur_text = cur_rel + '\t' + cur_e1 + '\t' + cur_e2 + '\n'
processed_data_to_write.append(cur_text)
with open(data_write_dir, 'w') as f:
f.writelines(processed_data_to_write)
get_data_lines_from_one_split_set(train_set, "train")
get_data_lines_from_one_split_set(val_set, "eval")
get_data_lines_from_one_split_set(test_set, "test")
# INPUT:
# if_add_e2Rel: whether from (e1, label, id) to (e1, rel, e2, label, id), where rel and e2 are both ""
# OUTPUT:
# train_set/val_set/test_set: [[text, label, line_id], ...]
def load_sentiment_data(splitted_data_dir="./Data/sentiment/splitted/", if_add_e2Rel=False):
with open(os.path.join(splitted_data_dir, 'train.json'), 'r') as f:
train_set = json.load(f)
with open(os.path.join(splitted_data_dir, 'val.json'), 'r') as f:
val_set = json.load(f)
with open(os.path.join(splitted_data_dir, 'test.json'), 'r') as f:
test_set = json.load(f)
if if_add_e2Rel:
def add_e2Rel(data_set):
for cur_id in range(len(data_set)):
assert len(data_set[cur_id]) == 3
cur_label = data_set[cur_id][1]
if "sentiment" in splitted_data_dir or "financial" in splitted_data_dir or "twitter" in splitted_data_dir:
if cur_label == 0:
cur_label_text = "negative"
elif cur_label == 1:
cur_label_text = "positive"
elif cur_label == 0.5:
cur_label_text = "neutral"
else:
raise Exception("cur_label: ", cur_label)
elif "yelp" in splitted_data_dir:
if cur_label == 0:
cur_label_text = "0 star"
elif cur_label == 1:
cur_label_text = "1 star"
elif cur_label == 2:
cur_label_text = "2 star"
elif cur_label == 3:
cur_label_text = "3 star"
elif cur_label == 4:
cur_label_text = "4 star"
else:
raise Exception("cur_label: ", cur_label)
else:
raise NotImplementError
# as there's no relation
data_set[cur_id].insert(1, "")
# e2 is the expected generation for classification
data_set[cur_id].insert(2, cur_label_text)
return data_set
train_set = add_e2Rel(train_set)
val_set = add_e2Rel(val_set)
test_set = add_e2Rel(test_set)
print("len(train_set): ", len(train_set))
print("len(val_set): ", len(val_set))
print("len(test_set): ", len(test_set))
print("train_set[:10]", train_set[:10])
return train_set, val_set, test_set
# INPUT
# force_split_id: only used when there's already saved subset with certain subset_selection;
# when force_split_id is speficied, len(split_size_list) should be 1, and force_split_id is the subset_selection for the new subset
# FUNCTION
# to split the train set of sentiment sentence classification dataset, obtain the subset (and its corresponding index in full set) for further experiment
def sentiment_train_subset_obtainer(root_data_dir="./Data/sentiment/splitted/", split_size_list=[20, 60, 200, 600], force_split_id=None):
train_set, val_set, test_set = load_sentiment_data(root_data_dir, if_add_e2Rel=True)
len_train = len(train_set)
assert len_train > max(split_size_list)
# split_size_id: the id of split_size in split_size_list
def select_and_save_subset(data_set, split_size, split_size_id, data_type):
full_index = np.arange(0, len(data_set), 1)
np.random.shuffle(full_index)
# print("full_index: ", full_index)
subset_index_shuffle = full_index[:split_size]
subset_index_sorted = sorted(subset_index_shuffle)
data_subset = [data_set[idex] for idex in subset_index_sorted]
# print("subset_index_sorted: ", subset_index_sorted)
exitsing_files = os.listdir(root_data_dir)
if "{}_subset_{}_index.npy".format(data_type, split_size_id) not in exitsing_files and \
"{}_subset_{}_data.npy".format(data_type, split_size_id) not in exitsing_files:
with open(os.path.join(root_data_dir, "{}_subset_{}_index.npy".format(data_type, split_size_id)), 'wb') as f:
np.save(f, subset_index_sorted)
with open(os.path.join(root_data_dir, "{}_subset_{}_data.npy".format(data_type, split_size_id)), 'wb') as f:
np.save(f, data_subset)
else:
raise Exception('{}_subset_{}_index.npy or {}_subset_{}_data.npy already existing in {}'.format(data_type, split_size_id, data_type, split_size_id, root_data_dir))
split_size_list = sorted(split_size_list)
if force_split_id != None:
assert len(split_size_list) == 1
select_and_save_subset(train_set, split_size_list[0], force_split_id, "train")
else:
for split_size_id, split_size in enumerate(split_size_list):
select_and_save_subset(train_set, split_size, split_size_id, "train")
# INPUT:
# train_set/val_set/test_set: [[text, label, line_id], ...]
# bow_dimension_setup: an integer
# if_CDH_input: if no, raw bow is raw bow; else raw bow is the difference between raw bow and most similar case's raw bow
# root_data_dir: when be used when if_CDH_input == True; used to collect the most similar cases' ids
# FUNCTION
# lower case + bog of word feature + whitening
# OUTPUT:
# processed_train_set, processed_val_set, processed_test_set: [whitened bow features tensor, label tensor, line_id tensor]
def preprocess_sentiment_dataset_as_NNInput(args, train_set, val_set, test_set, bow_dimension_setup, root_data_dir=""):
# when if_CDH == True; this function needs root_data_dir
if args.if_CDH:
assert root_data_dir != ""
tokenizer = RegexpTokenizer(r'\w+')
processed_train_set, processed_val_set, processed_test_set = [], [], []
## bag of words feature extraction
def get_tokenizedText_and_bowTokensCountDict(data_set):
# data_set_text: [[text 0], ...]
# data_set_text_tokenized: [[tokenized text 0], ...]
data_set_text, data_set_text_tokenized = [], []
bow_tokens_count_dict = {}
for cur_id in range(len(data_set)):
cur_text = data_set[cur_id][0].lower()
cur_text_tokenized = tokenizer.tokenize(cur_text)
data_set_text.append(cur_text)
data_set_text_tokenized.append(cur_text_tokenized)
for token in cur_text_tokenized:
if token not in bow_tokens_count_dict:
bow_tokens_count_dict[token] = 1
else:
bow_tokens_count_dict[token] += 1
return data_set_text, data_set_text_tokenized, bow_tokens_count_dict
train_text, train_text_tokenized, train_bow_tokens_count_dict = get_tokenizedText_and_bowTokensCountDict(train_set)
val_text, val_text_tokenized, val_bow_tokens_count_dict = get_tokenizedText_and_bowTokensCountDict(val_set)
test_text, test_text_tokenized, test_bow_tokens_count_dict = get_tokenizedText_and_bowTokensCountDict(test_set)
## get word2id for BOW feature
sorted_bow_tokens = [k for k, v in sorted(train_bow_tokens_count_dict.items(), key=lambda item: item[1], reverse=True)]
sorted_bow_count = [v for k, v in sorted(train_bow_tokens_count_dict.items(), key=lambda item: item[1], reverse=True)]
assert len(sorted_bow_tokens) == len(sorted_bow_count)
word2id = {}
if not len(sorted_bow_tokens) >= bow_dimension_setup:
raise Exception("len(sorted_bow_tokens): {}; bow_dimension_setup: {}".format(len(sorted_bow_tokens), bow_dimension_setup))
for cur_id in range(len(sorted_bow_tokens[:(bow_dimension_setup-1)])):
word2id[sorted_bow_tokens[cur_id]] = cur_id
word2id['<unk>'] = bow_dimension_setup - 1
# print(sorted_bow_count[bow_dimension_setup-1])
# print(len(sorted_bow_count))
## To find the words that count in BOW feature
def get_raw_bow(tokenized_data_set, bow_dimension, word2id):
raw_bow = torch.zeros((len(tokenized_data_set), bow_dimension))
for cur_id, cur_text_tokenized in enumerate(tokenized_data_set):
for cur_token in cur_text_tokenized:
if cur_token in word2id:
cur_word_id = word2id[cur_token]
else:
cur_word_id = word2id['<unk>']
raw_bow[cur_id, cur_word_id] += 1
return raw_bow
# raw_bow: torch.matrix((len(tokenized_data_set), bow_dimension))
train_raw_bow = get_raw_bow(train_text_tokenized, bow_dimension_setup, word2id)
val_raw_bow = get_raw_bow(val_text_tokenized, bow_dimension_setup, word2id)
test_raw_bow = get_raw_bow(test_text_tokenized, bow_dimension_setup, word2id)
# if using Case Difference Heuristics, this code block will process (raw_bow) to (raw_bow - most_similar_case's raw_bow)
if args.if_CDH:
def get_CDH_raw_bow(args, raw_bow, train_raw_bow, root_data_dir, data_type, bow_dimension, data_set, train_set):
assert data_type == 'train' or data_type == 'val' or data_type == 'test'
assert len(train_raw_bow) == len(train_set)
if data_type == 'train':
assert raw_bow.size() == train_raw_bow.size()
most_similar_ids = torch.load(os.path.join(args.most_similar_ids_data_dir, "{}_most_similar_id_matrix_full.pt".format(data_type)))
repetitive_similar_ids = torch.load(os.path.join(args.root_data_dir, "{}_ids_that_retrieved_the_same_case.pt".format(data_type)))
# assert most_similar_ids.size()[0] == raw_bow.size()[0]
len_data = raw_bow.size()[0]
if args.CDH_NN_label_method == 3:
CDH_raw_bow = torch.zeros((len_data, bow_dimension*2))
else:
CDH_raw_bow = torch.zeros((len_data, bow_dimension))
most_similar_train_cases = []
# dict_subsetIndex2lineId_curDataSet
dict_subsetIndex2lineId_curDataSet = {}
for cur_id in range(len(data_set)):
dict_subsetIndex2lineId_curDataSet[cur_id] = data_set[cur_id][2]
# train_subset_existing_original_line_ids
train_subset_existing_original_line_ids = []
dict_lineId2subsetIndex_train = {}
for cur_id in range(len(train_set)):
train_subset_existing_original_line_ids.append(train_set[cur_id][2])
dict_lineId2subsetIndex_train[train_set[cur_id][2]] = cur_id
# find CDH_raw_bow
for cur_id in range(len_data):
cur_bow = raw_bow[cur_id]
cur_data_originLineId = dict_subsetIndex2lineId_curDataSet[cur_id]
if cur_data_originLineId in repetitive_similar_ids:
cur_similar_ids = most_similar_ids[cur_data_originLineId][1:].tolist()
else:
cur_similar_ids = most_similar_ids[cur_data_originLineId].tolist()
tmp_similar_id = 0
while cur_similar_ids[tmp_similar_id] not in train_subset_existing_original_line_ids:
tmp_similar_id += 1
if tmp_similar_id == len(cur_similar_ids):
raise Exception("Failed to find tmp_similar_id", cur_id)
most_similar_case_bow = train_raw_bow[dict_lineId2subsetIndex_train[cur_similar_ids[tmp_similar_id]]]
if args.CDH_NN_label_method == 3:
# print("cur_bow.size(): ", cur_bow.size(), "most_similar_case_bow.size(): ", most_similar_case_bow.size())
cur_bow_difference = cur_bow - most_similar_case_bow
cur_context_bow = most_similar_case_bow
cur_concat_feature = torch.cat((cur_bow_difference, cur_context_bow), dim=0)
CDH_raw_bow[cur_id] = cur_concat_feature
else:
CDH_raw_bow[cur_id] = cur_bow - most_similar_case_bow
most_similar_train_cases.append(train_set[dict_lineId2subsetIndex_train[cur_similar_ids[tmp_similar_id]]])
assert len(CDH_raw_bow) == len(most_similar_train_cases)
return CDH_raw_bow, most_similar_train_cases
train_raw_bow_non_CDH = copy.deepcopy(train_raw_bow)
train_raw_bow, train_most_similar_train_cases = get_CDH_raw_bow(args, train_raw_bow, train_raw_bow_non_CDH, root_data_dir, "train", bow_dimension_setup, train_set, train_set)
val_raw_bow, val_most_similar_train_cases = get_CDH_raw_bow(args, val_raw_bow, train_raw_bow_non_CDH, root_data_dir, "val", bow_dimension_setup, val_set, train_set)
test_raw_bow, test_most_similar_train_cases = get_CDH_raw_bow(args, test_raw_bow, train_raw_bow_non_CDH, root_data_dir, "test", bow_dimension_setup, test_set, train_set)
# print("train_raw_bow: ", train_raw_bow.max().item())
# print("val_raw_bow: ", val_raw_bow.max().item())
# print("test_raw_bow: ", test_raw_bow.max().item())
## whitening
def get_whitened_bow(raw_bow, train_raw_bow, data_type):
assert data_type == 'train' or data_type == 'val' or data_type == 'test'
assert raw_bow.size()[1] == train_raw_bow.size()[1]
# print("raw_bow: ", raw_bow)
# print("raw_bow: ", raw_bow.max().item())
mean_bow = torch.mean(train_raw_bow, dim=0)
std_bow = torch.std(train_raw_bow, dim=0)
set_std_bow = torch.tensor(list(set(std_bow.tolist())))
min_not_zero_std_bow = torch.kthvalue(set_std_bow, torch.tensor(2))[0]
# print("min_not_zero_std_bow: ", min_not_zero_std_bow)
for cur_id in range(len(std_bow)):
if std_bow[cur_id] == 0:
# print("min_not_zero_std_bow: ", min_not_zero_std_bow)
std_bow[cur_id] = min_not_zero_std_bow
# print("std_bow.min(): ", std_bow.min())
whitened_bow = raw_bow - mean_bow
whitened_bow = whitened_bow / std_bow
# print("whitened_bow: ", whitened_bow.max().item())
assert whitened_bow.size() == raw_bow.size()
if data_type == 'train' and args.subset_selection == -1:
if not torch.abs(whitened_bow.mean(dim=0).mean() - 0) < 0.01:
raise Exception("whitened_bow.mean(dim=0).mean(): ", whitened_bow.mean(dim=0).mean())
if not torch.abs(whitened_bow.var(dim=0).mean() - 1) < 0.2:
raise Exception("whitened_bow.var(dim=0).mean(): ", whitened_bow.var(dim=0).mean())
return whitened_bow
train_whitened_bow = get_whitened_bow(train_raw_bow, train_raw_bow, 'train')
val_whitened_bow = get_whitened_bow(val_raw_bow, train_raw_bow, 'val')
test_whitened_bow = get_whitened_bow(test_raw_bow, train_raw_bow, 'test')
# print("train_whitened_bow: ", train_whitened_bow.max().item())
# print("val_whitened_bow: ", val_whitened_bow.max().item())
# print("test_whitened_bow: ", test_whitened_bow.max().item())
assert train_whitened_bow.size() == train_raw_bow.size()
assert val_whitened_bow.size() == val_raw_bow.size()
assert test_whitened_bow.size() == test_raw_bow.size()
## get processed_data
def get_processed_data(args, data_set, whitened_bow, root_data_dir=None, data_type=None, train_set=None, data_set_most_similar_train_cases=None):
if args.if_CDH:
assert data_type == 'train' or data_type == 'val' or data_type == 'test'
assert train_set != None
# most_similar_ids = torch.load(os.path.join(root_data_dir, "{}_most_similar_id_matrix.pt".format(data_type)))
# assert len(data_set) == most_similar_ids.size()[0]
assert len(data_set_most_similar_train_cases) == len(data_set)
assert whitened_bow.size()[0] == len(data_set)
data_len = len(data_set)
if args.if_CDH and args.CDH_NN_label_method == 3:
label_tensor = torch.zeros((data_len, 2))
else:
label_tensor = torch.zeros((data_len))
line_id_tensor = torch.zeros((data_len))
for cur_id in range(data_len):
if args.if_CDH:
# label_most_similar_case = train_set[most_similar_ids[cur_id][0]][1]
label_most_similar_case = data_set_most_similar_train_cases[cur_id][1]
assert label_most_similar_case == 0 or label_most_similar_case == 1
label_cur_query = data_set[cur_id][1]
assert label_cur_query == 0 or label_cur_query == 1
if args.CDH_NN_label_method == 0:
if label_most_similar_case == label_cur_query:
cur_CDH_label = 0
else:
cur_CDH_label = 1
label_tensor[cur_id] = cur_CDH_label
elif args.CDH_NN_label_method == 1 or args.CDH_NN_label_method == 2:
label_tensor[cur_id] = label_cur_query
elif args.CDH_NN_label_method == 3:
label_tensor[cur_id][label_cur_query] = 1
if label_most_similar_case == label_cur_query:
label_tensor[cur_id][abs(1-label_cur_query)] = 0
else:
label_tensor[cur_id][abs(1-label_cur_query)] = -1
else:
raise NotImplementedError
else:
label_tensor[cur_id] = data_set[cur_id][1]
line_id_tensor[cur_id] = data_set[cur_id][2]
# processed_data = [whitened_bow, F.one_hot(label_tensor.to(torch.int64), num_classes=2), line_id_tensor]
if args.if_CDH and args.CDH_NN_label_method == 3:
label_tensor = label_tensor.to(torch.float32)
else:
label_tensor = label_tensor.to(torch.int64)
processed_data = [whitened_bow, label_tensor, line_id_tensor]
return processed_data
if args.if_CDH:
processed_train_set = get_processed_data(args, train_set, train_whitened_bow, root_data_dir, "train", train_set, train_most_similar_train_cases)
processed_val_set = get_processed_data(args, val_set, val_whitened_bow, root_data_dir, "val", train_set, val_most_similar_train_cases)
processed_test_set = get_processed_data(args, test_set, test_whitened_bow, root_data_dir, "test", train_set, test_most_similar_train_cases)
else:
processed_train_set = get_processed_data(args, train_set, train_whitened_bow, root_data_dir, "train", train_set)
processed_val_set = get_processed_data(args, val_set, val_whitened_bow, root_data_dir, "val", train_set)
processed_test_set = get_processed_data(args, test_set, test_whitened_bow, root_data_dir, "test", train_set)
return processed_train_set, processed_val_set, processed_test_set
# files in raw_data_root_dir should be only data files
def sentiment_labelled_sentence_data_split(raw_data_root_dir="./Data/sentiment/raw_data/", data_to_save_dir="./Data/sentiment/splitted/"):
train_set, val_set, test_set = [], [], []
data_files = os.listdir(raw_data_root_dir)
ttl_pos_data, ttl_neg_data = [], []
for df in data_files:
data_file_full_addr = os.path.join(raw_data_root_dir, df)
cur_pos_data, cur_neg_data = [], []
with open(data_file_full_addr, 'r') as f:
cur_lines = f.readlines()
for cur_line in cur_lines:
cur_text, cur_label = cur_line.strip().split("\t")
cur_label = int(cur_label)
# assert cur_label == 0 or cur_label == 1
if cur_label == 0:
cur_neg_data.append(cur_text)
elif cur_label == 1:
cur_pos_data.append(cur_text)
else:
raise Exception
assert len(cur_pos_data) == len(cur_neg_data)
assert len(cur_pos_data) == 500
ttl_pos_data += cur_pos_data
ttl_neg_data += cur_neg_data
assert len(ttl_pos_data) == 1500
assert len(ttl_neg_data) == 1500
np.random.shuffle(ttl_pos_data)
np.random.shuffle(ttl_neg_data)
for cur_id in range(len(ttl_pos_data)):
if cur_id < 1000:
train_set.append([ttl_pos_data[cur_id], 1, len(train_set)])
train_set.append([ttl_neg_data[cur_id], 0, len(train_set)])
elif cur_id < 1250:
val_set.append([ttl_pos_data[cur_id], 1, len(val_set)])
val_set.append([ttl_neg_data[cur_id], 0, len(val_set)])
elif cur_id < 1500:
test_set.append([ttl_pos_data[cur_id], 1, len(test_set)])
test_set.append([ttl_neg_data[cur_id], 0, len(test_set)])
else:
raise Exception
# print("len(train_set): ", len(train_set))
# print("len(val_set): ", len(val_set))
# print("len(test_set): ", len(test_set))
print("train_set[:10]", train_set[:10])
# with open(os.path.join(data_to_save_dir, "train.json"), 'w') as f:
# json.dump(train_set, f)
# with open(os.path.join(data_to_save_dir, "val.json"), 'w') as f:
# json.dump(val_set, f)
# with open(os.path.join(data_to_save_dir, "test.json"), 'w') as f:
# json.dump(test_set, f)
# files in raw_data_root_dir should be only data files
def financial_labelled_sentence_data_split(raw_data_root_dir="./Data/financial_phasebank/FinancialPhraseBank-v1.0/", data_to_save_dir="./Data/financial_phasebank/splitted/"):
train_set, val_set, test_set = [], [], []
data_files = os.listdir(raw_data_root_dir)
ttl_pos_data, ttl_neu_data, ttl_neg_data = [], [], []
cnt_pos_data, cnt_neu_data, cnt_neg_data = 0, 0, 0
# loading data
# Sentences_AllAgree
# Sentences_75Agree
data_file_full_addr = os.path.join(raw_data_root_dir, "Sentences_AllAgree.txt")
with open(data_file_full_addr, 'r', encoding='latin-1') as f:
cur_lines = f.readlines()
for cur_line in cur_lines:
cur_line_splitted = cur_line.strip().split("@")
assert len(cur_line_splitted) == 2
cur_text, cur_label = cur_line_splitted
if cur_label == "positive":
if cnt_pos_data < 1000:
ttl_pos_data.append([cur_text, 1])
cnt_pos_data += 1
elif cur_label == "neutral":
if cnt_neu_data < 1000:
ttl_neu_data.append([cur_text, 0.5])
cnt_neu_data += 1
elif cur_label == "negative":
if cnt_neg_data < 1000:
ttl_neg_data.append([cur_text, 0])
cnt_neg_data += 1
else:
raise NotImplementedError("cur_label: ", cur_label)
if cnt_pos_data == 1000 and cnt_neu_data == 1000 and cnt_neg_data == 1000:
print("cnt_pos_data: ", cnt_pos_data)
break
print("len(ttl_pos_data): ", len(ttl_pos_data))
print("len(ttl_neu_data): ", len(ttl_neu_data))
print("len(ttl_neg_data): ", len(ttl_neg_data))
# function: divide data_list to train_data_list, val_data_list, test_data_list
def divide_into_3sets(data_list):
len_data_list = len(data_list)
train_len = int(0.6*len_data_list)
val_len = int(0.15*len_data_list)
test_len = len_data_list - train_len - val_len
train_data_list, val_data_list, test_data_list = [], [], []
for cur_id in range(len_data_list):
if cur_id < train_len:
train_data_list.append([data_list[cur_id][0], data_list[cur_id][1]])
elif cur_id < train_len + val_len:
val_data_list.append([data_list[cur_id][0], data_list[cur_id][1]])
else:
test_data_list.append([data_list[cur_id][0], data_list[cur_id][1]])
return train_data_list, val_data_list, test_data_list
pos_train, pos_val, pos_test = divide_into_3sets(ttl_pos_data)
neu_train, neu_val, neu_test = divide_into_3sets(ttl_neu_data)
neg_train, neg_val, neg_test = divide_into_3sets(ttl_neg_data)
train_set = pos_train + neu_train + neg_train
val_set = pos_val + neu_val + neg_val
test_set = pos_test + neu_test + neg_test
# function: [[cur_text, label],...] --> [[cur_text, label, index], ...]
def add_data_index(data_list):
for cur_id in range(len(data_list)):
data_list[cur_id].append(cur_id)
return data_list
train_set = add_data_index(train_set)
val_set = add_data_index(val_set)
test_set = add_data_index(test_set)
# np.random.shuffle(train_set)
# np.random.shuffle(val_set)
# np.random.shuffle(test_set)
print("len(train_set): ", len(train_set))
print("len(val_set): ", len(val_set))
print("len(test_set): ", len(test_set))
print("train_set[:10]", train_set[:10])
# with open(os.path.join(data_to_save_dir, "train.json"), 'w') as f:
# json.dump(train_set, f)
# with open(os.path.join(data_to_save_dir, "val.json"), 'w') as f:
# json.dump(val_set, f)
# with open(os.path.join(data_to_save_dir, "test.json"), 'w') as f:
# json.dump(test_set, f)
def yelp_labelled_sentence_data_split(raw_data_root_dir="", data_to_save_dir="./Data/yelp/splitted/"):
dataset = load_dataset("yelp_review_full")
# datast: a list of dict
# desired_number: how many data to select
# start_id: from which data index to select
def select_train_test_set(datast, desired_number, start_id):
target_set = []
cnt_collected = 0
for cur_id in range(start_id, len(datast)):
cur_txt = datast[cur_id]['text']
cur_lbl = datast[cur_id]['label']
# to make sure that BART is enough to put it into context
if cnt_collected < desired_number:
if len(cur_txt.split()) <= 100:
target_set.append([cur_txt, cur_lbl, cnt_collected])
cnt_collected += 1
else:
break
# cur_id acks as a end_id for further usage (e.g. train set for val set)
return target_set, cur_id
train_set, end_id_train_set = select_train_test_set(dataset['train'], 2000, 0)
val_set, _ = select_train_test_set(dataset['train'], 500, end_id_train_set)
test_set, _ = select_train_test_set(dataset['test'], 1000, 0)
print("len(train_set): ", len(train_set))
print("len(val_set): ", len(val_set))
print("len(test_set): ", len(test_set))
print("train_set[:10]", train_set[:10])
# with open(os.path.join(data_to_save_dir, "train.json"), 'w') as f:
# json.dump(train_set, f)
# with open(os.path.join(data_to_save_dir, "val.json"), 'w') as f:
# json.dump(val_set, f)
# with open(os.path.join(data_to_save_dir, "test.json"), 'w') as f:
# json.dump(test_set, f)
return train_set, val_set, test_set
def twitter_labelled_sentence_data_split(raw_data_root_dir="", data_to_save_dir="./Data/twitter/splitted/"):
dataset = load_dataset("carblacac/twitter-sentiment-analysis")
def select_train_test_set(datast, desired_number, start_id):
target_set = []
cnt_collected = 0
cnt_positive, cnt_negative = 0, 0
for cur_id in range(start_id, len(datast)):
cur_txt = datast[cur_id]['text']
cur_lbl = datast[cur_id]['feeling']
# to make sure that BART is enough to put it into context
if cnt_collected < desired_number:
if len(cur_txt.split()) <= 100:
# half-half for positive-negative data
if (cur_lbl == 1 and cnt_positive <= math.ceil(desired_number/2)) or (cur_lbl == 0 and cnt_negative <= math.ceil(desired_number/2)):
target_set.append([cur_txt, cur_lbl, cnt_collected])
cnt_collected += 1
if cur_lbl == 1:
cnt_positive += 1
elif cur_lbl == 0:
cnt_negative += 1
else:
raise Exception
else:
break
# cur_id acks as a end_id for further usage (e.g. train set for val set)
print("cnt_positive: {}; cnt_negative: {}".format(cnt_positive, cnt_negative))
return target_set, cur_id
train_set, end_id_train_set = select_train_test_set(dataset['train'], 2000, 0)
val_set, _ = select_train_test_set(dataset['validation'], 500, 0)
test_set, _ = select_train_test_set(dataset['test'], 1000, 0)
print("len(train_set): ", len(train_set))
print("len(val_set): ", len(val_set))
print("len(test_set): ", len(test_set))
print("train_set[:10]", train_set[:10])
with open(os.path.join(data_to_save_dir, "train.json"), 'w') as f:
json.dump(train_set, f)
with open(os.path.join(data_to_save_dir, "val.json"), 'w') as f:
json.dump(val_set, f)
with open(os.path.join(data_to_save_dir, "test.json"), 'w') as f:
json.dump(test_set, f)
return train_set, val_set, test_set
if __name__ == "__main__":
## split data to train/val/test sets
# financial_labelled_sentence_data_split()
# yelp_labelled_sentence_data_split()
# twitter_labelled_sentence_data_split()
## split train/val/test sets to few-shot subsets
# sentiment_train_subset_obtainer("./Data/financial_phasebank/splitted/")
# sentiment_train_subset_obtainer("./Data/yelp/splitted/")
# sentiment_train_subset_obtainer("./Data/twitter/splitted/")
## obtain .txt version of train/val/test sets for retrieval
# train_set, val_set, test_set = load_sentiment_data(splitted_data_dir="./Data/financial_phasebank/splitted/", if_add_e2Rel=True)
# get_data_lines_using_sentimentSentence_dataset_for_retriever(train_set, val_set, test_set, splitted_data_dir="./Data/financial_phasebank/splitted/")
# train_set, val_set, test_set = load_sentiment_data(splitted_data_dir="./Data/yelp/splitted/", if_add_e2Rel=True)
# get_data_lines_using_sentimentSentence_dataset_for_retriever(train_set, val_set, test_set, splitted_data_dir="./Data/yelp/splitted/")
# train_set, val_set, test_set = load_sentiment_data(splitted_data_dir="./Data/twitter/splitted/", if_add_e2Rel=True)
# get_data_lines_using_sentimentSentence_dataset_for_retriever(train_set, val_set, test_set, splitted_data_dir="./Data/twitter/splitted/")
pass