-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgradientpenalty.py
36 lines (28 loc) · 1.17 KB
/
gradientpenalty.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import torch.nn as nn
def gradient_penalty(critic, points21, real,fake, device="cpu"):
# torch.autograd.set_detect_anomaly(True)
BATCH_SIZE, C, H, W = real.shape
alpha = torch.rand((BATCH_SIZE, 1, 1, 1)).repeat(1, C, H, W).to(device)
interpolated_images = real * alpha + fake * (1 - alpha)
# Calculate critic scores
mixed_scores = critic(interpolated_images, points21)
# Take the gradient of the scores with respect to the images
gradient = torch.autograd.grad(
inputs=interpolated_images,
outputs=mixed_scores,
grad_outputs=torch.ones_like(mixed_scores),
create_graph=True,
retain_graph=True,
)[0]
gradient = gradient.view(gradient.shape[0], -1)
gradient_norm = gradient.norm(2, dim=1)
gradient_penalty = torch.mean((gradient_norm - 1) ** 2)
return gradient_penalty
def save_checkpoint(state, filename="wgan_gp.pth.tar"):
print("=> Saving checkpoint")
torch.save(state, filename)
def load_checkpoint(checkpoint, gen, disc):
print("=> Loading checkpoint")
gen.load_state_dict(checkpoint['gen'])
disc.load_state_dict(checkpoint['disc'])