Skip to content

Latest commit

 

History

History
70 lines (56 loc) · 2.03 KB

TODO.md

File metadata and controls

70 lines (56 loc) · 2.03 KB

Current

  • make it easier to use / build different models
  • implement autoencoder model
  • implement denoising with autoencoder model
  • build autoencoder in keras
  • build autoencoder in pytorch
  • build via docker image

Functionality

  • autoencoder training
  • get postfilter to work on spectral subtraction
  • set power_scale default to 'power_to_db'?
  • functions to use librosa or not to perform tasks (librosa doesn't work on notebooks.ai for example)
  • measure level of snr
  • measure quality of filtering/speech enhancement
  • measure signal similarity
  • source separation
  • gender switch
  • text to speech
  • speech to text
  • dataset exploration (visualize 10 random samples/ based on size?, etc.)
  • simple inclusion of noise reduction into training models
  • pysoundtool and pysoundtool.online version? (use librosa vs no librosa)

Presentation

  • blog post on each set of functionalities
  • presentation of examples
  • get documentation online
  • simplify functions
  • improve documentation (references, examples, testing, data shapes!!, help options)

Testing

  • expand test cases
  • efficiency of code

Organization

  • reorganize based on use... how import statement should work
  • make sample_rate, samprate, samplingrate, sr namespace consistent
  • make features/feature_type namespace consistent
  • use keyword arguments for librosa and scipy?
  • simplify

Organization ideas:

pyst.loadsound(audiofile, sr) pyst.playsound(audiofile, sr)? pyst.plotsound(audiofile, sr, feature_type)

pyst.data.train_val_test(input_data, output_data) pyst.data.analyze(audo_dir)? For example for audio types, lengths?, sizes? etc. Useful for logging? pyst.feats.plot() pyst.feats.hear() pyst.feats.extract() model = pyst.models.speechrec_simple() # model will be a class instance.. history = pyst.models.train(model, train_path, val_path) matplotplib.pyplot.plot(history) ? pyst.models.plot(history) pyst.models.run(model, test_path)

pyst.filters.wiener() pyst.filters.bandsubtraction() pyst.models.soundclassifier() pyst.models.autoencoder_denoise() pyst.models.speechrec()