-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoscilloscope.py
54 lines (48 loc) · 1.77 KB
/
oscilloscope.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from operators.base import OutputOperator
from gui.helpers import LogValueAxis
import numpy as np
import math
class Oscilloscope(OutputOperator):
name_counter = 0
def __init__(self, input_ops, x_range=None, x_max=None, x_log=False, y_range=None, y_db=False, gui=None, name=None):
assert(len(input_ops) == 1)
super().__init__(input_ops, name=name)
self.name = name
self.gui = gui
self.y_db = y_db
self.x_log = x_log
kwargs = {}
if self.x_log:
kwargs['axisItems'] = {'bottom': LogValueAxis(orientation='bottom')}
self.pl = self.gui.add_plot(title=self.name, **kwargs)
self.y_range = y_range
self.x_range = x_range
self.x_max = x_max
if y_range:
self.pl.setRange(yRange=self.y_range)
if x_range:
if x_log:
self.pl.setRange(xRange=list(map(math.log, self.x_range)))
else:
self.pl.setRange(xRange=self.x_range)
self.curve = self.pl.plot(pen='y')
self.ptr = 0
def next_buffer(self, input_buffers, n):
input_buffer = input_buffers[0]
prefilter = np.copy(input_buffer)
if self.y_db:
prefilter = 10 * np.log10(input_buffer)
if self.x_max:
xs = np.arange(len(input_buffer)) / len(input_buffer) * self.x_max
if self.x_log:
xs = np.log(xs)
args = [xs, prefilter]
else:
args = [prefilter]
self.gui.update_graph_signal.emit(self.curve,
args,
{},
self.pl,
self.ptr == 0)
self.ptr += 1
return []