-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathARMA_models_for_TSA_2.Rmd
109 lines (96 loc) · 2.68 KB
/
ARMA_models_for_TSA_2.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
title: "ARMA_models_for_TSA_2"
author: "Aakash Khandelwal"
date: "July 3, 2016"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r}
# Moving Average Proces (MA(1), parameter = 0.6)
set.seed(1)
x <- w <- rnorm(100)
for (t in 2:100)
x[t] <- w[t] + 0.6*w[t-1]
layout(1:2)
plot(x, type="l")
acf(x) # for k(lag) > q(number of parameters), acf = 0
# Simulate moving average to fit the above generated series
# Arima function, setting AR and Integrated paramter = 0
x.ma <- arima(x, order=c(0, 0, 1))
x.ma
# Ouput shows Standard erord, estimated variance
# loglikelihood and Akaike Information Criterion also
# Arima also intercept intercept term as it do no subtract mean value of series
# CI for parameter
0.6023 + c(-1.96, 1.96)*0.0827
# Moving Average Proces (MA(1), parameter = -0.6)
set.seed(1)
x2 <- w <- rnorm(100)
for (t in 2:100)
x2[t] <- w[t] -0.6*w[t-1]
layout(1:2)
plot(x2, type="l")
acf(x2) # for k(lag) > q(number of parameters), acf = 0
# Simulate moving average to fit the above generated series
# Arima function, setting AR and Integrated paramter = 0
x2.ma <- arima(x2, order=c(0, 0, 1))
x2.ma
# CI for parameter
-0.7298 + c(-1.96, 1.96)* 0.1008
# MA(3) - significant peaks at k =1,2,3 and insignificant peaks for k > 3
# parameters - 0.6,0.4,0.2
set.seed(3)
x3 <- w <- rnorm(1000)
for (t in 4:1000)
x3[t] <- w[t] + 0.6*w[t-1] + 0.4*w[t-2] + 0.2*w[t-3]
layout(1:2)
plot(x3, type="l")
acf(x3)
# Fit MA(3)
x3.ma <- arima(x3, order=c(0, 0, 3))
x3.ma
# CI of paramters
0.6081 + c(-1.96, 1.96)* 0.0309
0.3776 + c(-1.96, 1.96)* 0.0357
0.1731 + c(-1.96, 1.96)* 0.0323
# All parameters are in the CI
# Good fit
# Fitiing MA on financial data
# Amazon
library(quantmod)
getSymbols("AMZN")
amznrt = diff(log(Cl(AMZN))) # log returns
# Fitting MA(1)
amznrt.ma <- arima(amznrt, order=c(0, 0, 1))
amznrt.ma
layout(1,1)
acf(amznrt.ma$res[-1]) # we find that it is not a good fit
# Fitting MA(2)
amznrt.ma2 <- arima(amznrt, order=c(0, 0, 2))
amznrt.ma2
layout(1,1)
acf(amznrt.ma2$res[-1]) # we find that it is not a good fit, long memory effects
# Fitting MA(3)
amznrt.ma3 <- arima(amznrt, order=c(0, 0, 3))
amznrt.ma3
layout(1,1)
acf(amznrt.ma3$res[-1]) # we find that it is not a good fit
# MA(3) similar to MA(2), can`t explain long term effects
# MA on S&P Index
getSymbols("^GSPC")
gspcrt = diff(log(Cl(GSPC))) # Log returns
# Fitting MA(1)
gspcrt.ma <- arima(gspcrt, order=c(0, 0, 1))
gspcrt.ma
acf(gspcrt.ma$res[-1]) # Not a good fit
# Fitting MA(2)
gspcrt.ma2 <- arima(gspcrt, order=c(0, 0, 2))
gspcrt.ma2
acf(gspcrt.ma2$res[-1]) # Not a good fit
# Fitting MA(3)
gspcrt.ma3 <- arima(gspcrt, order=c(0, 0, 3))
gspcrt.ma3
acf(gspcrt.ma3$res[-1]) # Not a good fit
```