-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
287 lines (218 loc) · 10.6 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
###################################################
# Image Captioning with Deep Reinforcement Learning
# SJSU CMPE-297-03 | Spring 2020
#
#
# Team:
# Pratikkumar Prajapati
# Aashay Mokadam
# Karthik Munipalle
###################################################
import torch
import torch.nn as nn
from torch.nn import functional as F
import numpy as np
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MAX_SEQ_LEN = 17 # the max captions len in the dataset
def repackage_hidden(h):
"""
Wraps hidden states in new Tensors, to detach them from their history.
@param h:
@return:
"""
if isinstance(h, torch.Tensor):
return h.detach().to(device)
else:
return tuple(repackage_hidden(v) for v in h)
class PolicyNetwork(nn.Module):
"""
This is the Policy Network class. Works as an actor of the system.
Models sequential data (image captions) by initializing LSTM hidden
states with embedded image features (from a pretrained VGG16 model)
"""
def __init__(self, word_to_idx, input_dim=512, wordvec_dim=512, hidden_dim=512,
pretrained_embeddings=None, bidirectional=False):
"""
@param word_to_idx: dict of word to index
@param input_dim: dimensions of input features
@param wordvec_dim: dimensions of embeddings
@param hidden_dim: dimensions of hidden layers
@param pretrained_embeddings: (optional) pretrained word vectors to use
@param bidirectional: (optional) flag - whether to use bidirectional recurrent networks
"""
super(PolicyNetwork, self).__init__()
self.bidirectional = bidirectional
self.word_to_idx = word_to_idx
self.idx_to_word = {i: w for w, i in word_to_idx.items()}
vocab_size = len(word_to_idx)
num_dim = 2 if self.bidirectional else 1
if pretrained_embeddings is not None:
self.caption_embedding = nn.Embedding.from_pretrained(torch.FloatTensor(pretrained_embeddings), freeze=True)
wordvec_dim = pretrained_embeddings.shape[1]
else:
self.caption_embedding = nn.Embedding(vocab_size, wordvec_dim)
self.cnn2linear = nn.Linear(input_dim, hidden_dim * num_dim)
self.lstm = nn.LSTM(wordvec_dim, hidden_dim, batch_first=True, bidirectional=self.bidirectional)
self.linear2vocab = nn.Linear(hidden_dim * num_dim, vocab_size)
def forward(self, features, captions):
input_captions = self.caption_embedding(captions)
hidden_init = self.cnn2linear(features)
if self.bidirectional:
hidden_init = torch.cat(torch.split(hidden_init, int(hidden_init.shape[-1]/2), dim=-1), dim=0)
cell_init = torch.zeros_like(hidden_init)
output, _ = self.lstm(input_captions, (hidden_init, cell_init))
output = self.linear2vocab(output)
return output
class ValueNetworkRNN(nn.Module):
"""
This is RNN submodule of the main Value Network. It gets wrapped by the Value Network.
Embeds a sequence (caption) into a vector space, then models it via an LSTM layer
"""
def __init__(self, word_to_idx, input_dim=512, wordvec_dim=512, hidden_dim=512,
pretrained_embeddings=None, bidirectional=False):
"""
@param word_to_idx: dict of word to index
@param input_dim: dimensions of input features
@param wordvec_dim: dimensions of embeddings
@param hidden_dim: dimensions of hidden layers
@param pretrained_embeddings: (optional) pretrained word vectors to use
@param bidirectional: (optional) flag - whether to use bidirectional recurrent networks
"""
super(ValueNetworkRNN, self).__init__()
self.bidirectional = bidirectional
self.hidden_dim = hidden_dim
self.word_to_idx = word_to_idx
self.idx_to_word = {i: w for w, i in word_to_idx.items()}
vocab_size = len(word_to_idx)
if pretrained_embeddings is not None:
self.caption_embedding = nn.Embedding.from_pretrained(torch.FloatTensor(pretrained_embeddings), freeze=True)
wordvec_dim = pretrained_embeddings.shape[1]
else:
self.caption_embedding = nn.Embedding(vocab_size, wordvec_dim)
self.init_hidden()
self.lstm = nn.LSTM(wordvec_dim, hidden_dim, bidirectional=self.bidirectional)
def init_hidden(self):
if self.bidirectional:
self.hidden_cell = (
torch.zeros(2, 1, self.hidden_dim).to(device), torch.zeros(2, 1, self.hidden_dim).to(device))
else:
self.hidden_cell = (
torch.zeros(1, 1, self.hidden_dim).to(device), torch.zeros(1, 1, self.hidden_dim).to(device))
def forward(self, captions):
input_captions = self.caption_embedding(captions)
output, self.hidden_cell = self.lstm(input_captions.view(len(input_captions), 1, -1), self.hidden_cell)
return output
class ValueNetwork(nn.Module):
"""
This is the main Value Network class. it acts as a Critic of the system.
Combines (via concatenation) the embedded image features (from pretrained VGG16)
and the image caption (sequential representation via the ValueNetworkRNN embedding)
and puts the joint features through feed-forward layers (i.e. multi-level perceptron)
to get a scalar value.
"""
def __init__(self, word_to_idx, pretrained_embeddings=None, bidirectional=False):
"""
@param word_to_idx: dict of word to index
@param pretrained_embeddings: (optional) pretrained word vectors to use
@param bidirectional: (optional) flag - whether to use bidirectional recurrent networks
"""
super(ValueNetwork, self).__init__()
self.bidirectional = bidirectional
self.valrnn = ValueNetworkRNN(word_to_idx, pretrained_embeddings=pretrained_embeddings,
bidirectional=self.bidirectional)
self.linear1 = nn.Linear(1024, 512)
self.linear2 = nn.Linear(512, 1)
if self.bidirectional:
self.rnn_linear = nn.Linear(1024, 512)
def forward(self, features, captions):
for t in range(captions.shape[1]):
value_rnn_output = self.valrnn(captions[:, t])
if self.bidirectional:
value_rnn_output = self.rnn_linear(value_rnn_output)
value_rnn_output = value_rnn_output.squeeze(0).squeeze(1)
state = torch.cat((features, value_rnn_output), dim=1)
output = self.linear1(state)
output = self.linear2(output)
return output
class RewardNetworkRNN(nn.Module):
"""
This is RNN submodule of the main Reward Network. It gets wrapped by the Reward Network.
Embeds sequential data (captions) and models it through a Gated Recurrent Unit layer.
"""
def __init__(self, word_to_idx, input_dim=512, wordvec_dim=512, hidden_dim=512,
pretrained_embeddings=None, bidirectional=False):
"""
@param word_to_idx: dict of word to index
@param input_dim: dimensions of input features
@param wordvec_dim: dimensions of embeddings
@param hidden_dim: dimensions of hidden layers
@param pretrained_embeddings: (optional) pretrained word vectors to use
@param bidirectional: (optional) flag - whether to use bidirectional recurrent networks
"""
super(RewardNetworkRNN, self).__init__()
self.bidirectional = bidirectional
self.hidden_dim = hidden_dim
self.word_to_idx = word_to_idx
self.idx_to_word = {i: w for w, i in word_to_idx.items()}
vocab_size = len(word_to_idx)
if pretrained_embeddings is not None:
self.caption_embedding = nn.Embedding.from_pretrained(torch.FloatTensor(pretrained_embeddings), freeze=True)
wordvec_dim = pretrained_embeddings.shape[1]
else:
self.caption_embedding = nn.Embedding(vocab_size, wordvec_dim)
self.init_hidden()
self.gru = nn.GRU(wordvec_dim, hidden_dim, bidirectional=self.bidirectional)
def init_hidden(self):
if self.bidirectional:
self.hidden_cell = torch.zeros(2, 1, self.hidden_dim).to(device)
else:
self.hidden_cell = torch.zeros(1, 1, self.hidden_dim).to(device)
def forward(self, captions):
input_captions = self.caption_embedding(captions)
output, self.hidden_cell = self.gru(input_captions.view(len(input_captions), 1, -1), self.hidden_cell)
return output
class RewardNetwork(nn.Module):
"""
This is the main Reward Network.
Projects semantic data (via GRU modelling representations) and visual data (via pretrained VGG16 features)
onto a shared embedding vector space.
"""
def __init__(self, word_to_idx, pretrained_embeddings=None, bidirectional=False):
"""
@param word_to_idx: dict of word to index
@param pretrained_embeddings: (optional) pretrained word vectors to use
@param bidirectional: (optional) flag - whether to use bidirectional recurrent networks
"""
super(RewardNetwork, self).__init__()
self.bidirectional = bidirectional
rnn_out_dim = 1024 if self.bidirectional else 512
self.rewrnn = RewardNetworkRNN(word_to_idx, pretrained_embeddings=pretrained_embeddings,
bidirectional=self.bidirectional)
self.visual_embed = nn.Linear(512, 512)
self.semantic_embed = nn.Linear(rnn_out_dim, 512)
def forward(self, features, captions):
for t in range(captions.shape[1]):
reward_rnn_output = self.rewrnn(captions[:, t])
reward_rnn_output = reward_rnn_output.squeeze(0).squeeze(1)
se = self.semantic_embed(reward_rnn_output)
ve = self.visual_embed(features)
return ve, se
class AdvantageActorCriticNetwork(nn.Module):
"""
The core Advantage Actor Critic class. It wraps the value and policy networks and works as an Agent
for image caption predictions.
"""
def __init__(self, value_network, policy_network):
"""
@param value_network: The value network to that acts as the critic for training
@param policy_network: The policy network that acts as the actor for training
"""
super(AdvantageActorCriticNetwork, self).__init__()
self.value_network = value_network
self.policy_network = policy_network
def forward(self, features, captions):
# Get value from value network
values = self.value_network(features, captions)
# Get action probabilities from policy network
probs = self.policy_network(features.unsqueeze(0), captions)[:, -1:, :]
return values, probs