forked from rmislam/PythonSIFT
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsiftmatch.py
55 lines (45 loc) · 1.58 KB
/
siftmatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from siftdetector import detect_keypoints
import numpy as np
import cv2
import itertools
def match_template(imagename, templatename, threshold, cutoff):
img = cv2.imread(imagename)
template = cv2.imread(templatename)
[kpi, di] = detect_keypoints(imagename, threshold)
[kpt, dt] = detect_keypoints(templatename, threshold)
flann_params = dict(algorithm=1, trees=4)
flann = cv2.flann_Index(np.asarray(di, np.float32), flann_params)
idx, dist = flann.knnSearch(np.asarray(dt, np.float32), 1, params={})
del flann
dist = dist[:,0]/2500.0
dist = dist.reshape(-1,).tolist()
idx = idx.reshape(-1).tolist()
indices = range(len(dist))
indices.sort(key=lambda i: dist[i])
dist = [dist[i] for i in indices]
idx = [idx[i] for i in indices]
kpi_cut = []
for i, dis in itertools.izip(idx, dist):
if dis < cutoff:
kpi_cut.append(kpi[i])
else:
break
kpt_cut = []
for i, dis in itertools.izip(indices, dist):
if dis < cutoff:
kpt_cut.append(kpt[i])
else:
break
h1, w1 = img.shape[:2]
h2, w2 = template.shape[:2]
nWidth = w1 + w2
nHeight = max(h1, h2)
hdif = (h1 - h2) / 2
newimg = np.zeros((nHeight, nWidth, 3), np.uint8)
newimg[hdif:hdif+h2, :w2] = template
newimg[:h1, w2:w1+w2] = img
for i in range(min(len(kpi), len(kpt))):
pt_a = (int(kpt[i,1]), int(kpt[i,0] + hdif))
pt_b = (int(kpi[i,1] + w2), int(kpi[i,0]))
cv2.line(newimg, pt_a, pt_b, (255, 0, 0))
cv2.imwrite('matches.jpg', newimg)