-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchatCallback.py
226 lines (166 loc) · 6.03 KB
/
chatCallback.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from typing import Dict, Union, List, Any
from langchain.callbacks.base import BaseCallbackHandler
from langchain_core.agents import AgentFinish, AgentAction
from langchain_core.messages import BaseMessage
from langchain_core.outputs import LLMResult
from streamlit.runtime.state import SessionStateProxy
class SimpleCallback(BaseCallbackHandler):
def __init__(self, st_state: SessionStateProxy) -> None:
"""
Args:
st_state (SessionStateProxy): session state of the streamlit app
Returns:
None
"""
super(SimpleCallback, self).__init__()
self.st_state = st_state
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> Any:
"""Run when LLM starts running.
Args:
serialized (Dict[str, Any]):
prompts (List[str]):
**kwargs (Any):
Returns:
object (Any):
"""
return super(SimpleCallback, self).on_llm_start(serialized, prompts, **kwargs)
def on_chat_model_start(
self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any
) -> Any:
"""Run when Chat Model starts running.
Args:
serialized (Dict[str, Any]):
messages (List[List[BaseMessage]]):
**kwargs (Any):
Returns:
object (Any):
"""
return super(SimpleCallback, self).on_chat_model_start(serialized, messages, **kwargs)
def on_llm_new_token(self, token: str, **kwargs: Any) -> Any:
"""Run on new LLM token. Only available when streaming is enabled.
Args:
token (str):
**kwargs (Any):
Returns:
object (Any):
"""
return super(SimpleCallback, self).on_llm_new_token(token, **kwargs)
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> Any:
"""Run when LLM ends running.
Args:
response (LLMResult):
**kwargs (Any):
Returns:
object (Any):
"""
return super(SimpleCallback, self).on_llm_end(response, **kwargs)
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> Any:
"""Run when LLM errors.
Args:
error (Union[Exception, KeyboardInterrupt]):
**kwargs (Any):
Returns:
object (Any):
"""
return super(SimpleCallback, self).on_llm_error(error, **kwargs)
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> Any:
"""Run when chain starts running.
Args:
serialized (Dict[str, Any]):
inputs (Dict[str, Any]):
**kwargs (Any):
Returns:
object (Any):
"""
return super(SimpleCallback, self).on_chain_start(serialized, inputs, **kwargs)
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> Any:
"""Run when chain ends running.
Args:
outputs (Dict[str, Any]):
**kwargs (Any):
Returns:
object (Any):
"""
return super(SimpleCallback, self).on_chain_end(outputs, **kwargs)
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> Any:
"""Run when chain errors.
Args:
error (Union[Exception, KeyboardInterrupt]):
**kwargs (Any):
Returns:
object (Any):
"""
return super(SimpleCallback, self).on_chain_error(error, **kwargs)
def on_tool_start(
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
) -> Any:
"""Run when tool starts running.
Args:
serialized (Dict[str, Any]):
input_str (str):
**kwargs (Any):
Returns:
object (Any):
"""
return super(SimpleCallback, self).on_tool_start(serialized, input_str, **kwargs)
def on_tool_end(self, output: Any, **kwargs: Any) -> dict | Any:
"""Run when tool ends running.
Adds geocode_points in streamlit state
Args:
output (Any):
**kwargs (Any):
Returns:
object (Any):
"""
if isinstance(output, dict) and output.get('geocode_points', None) is not None:
geocode_points = {'geocode_points': output['geocode_points'].copy()}
self.st_state.messages.append(geocode_points)
output['geocode_points'] = ""
return output
return super(SimpleCallback, self).on_tool_end(output, **kwargs)
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> Any:
"""Run when tool errors.
Args:
error (Union[Exception, KeyboardInterrupt]):
**kwargs (Any):
Returns:
object (Any):
"""
return super(SimpleCallback, self).on_tool_error(error, **kwargs)
def on_text(self, text: str, **kwargs: Any) -> Any:
"""Run on arbitrary text.
Args:
text (str):
**kwargs (Any):
Returns:
object (Any):
"""
return super(SimpleCallback, self).on_text(text, **kwargs)
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Run on agent action.
Args:
action (AgentAction):
**kwargs (Any):
Returns:
object (Any):
"""
return super(SimpleCallback, self).on_agent_action(action, **kwargs)
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> Any:
"""Run on agent end.
Args:
finish (AgentFinish):
**kwargs (Any):
Returns:
object (Any):
"""
return super(SimpleCallback, self).on_agent_finish(finish, **kwargs)