-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhospital_readmission_code.R
301 lines (241 loc) · 11.6 KB
/
hospital_readmission_code.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#Hospital Readmission Prediction
#Name: Abhishek Patil
setwd("C:/Users/Abhishek/Desktop/Hospital Readmission Prediction/Challenge")
options(repr.matrix.max.cols=50, repr.matrix.max.rows=100)
options(warn=-1)
#Libraries
library(data.table)
library(xgboost)
library(Matrix)
library(caret)
library(dummies)
library(pROC)
#--------------------------------------------- PART 1 ---------------------------------------------#
train <- read.csv('challengetraining_data.csv')
#Data Preprocessing includes dropping columns, deleting some rows, changing column types from categorical to numeric, etc.
#Data Summary before processing.
#Most of the preprocessing steps are based on the results of this summary.
summary(train)
#Defining a function for preprocessing
preprocessing <- function(train)
{
#Dropping the ID columns
train$encounter_id <- NULL
train$patient_nbr <- NULL
#Dealing with Special Characters (Replacing "?" with NA values)
train[train == "?"] <- NA
#Converting Race to numeric
train$race <- as.numeric(as.factor(train$race))
#Converting Age ranges into numeric values
train$age <- ifelse(train$age == "[0-10)", 0, train$age)
train$age <- ifelse(train$age == "[10-20)", 1, train$age)
train$age <- ifelse(train$age == "[20-30)", 2, train$age)
train$age <- ifelse(train$age == "[30-40)", 3, train$age)
train$age <- ifelse(train$age == "[40-50)", 4, train$age)
train$age <- ifelse(train$age == "[50-60)", 5, train$age)
train$age <- ifelse(train$age == "[60-70)", 6, train$age)
train$age <- ifelse(train$age == "[70-80)", 7, train$age)
train$age <- ifelse(train$age == "[80-90)", 8, train$age)
train$age <- ifelse(train$age == "[90-100)", 9, train$age)
train$age <- as.numeric(train$age)
#Converting Gender to numeric
train <- train[!is.na(train$gender), ] #Dropping rows with NA values in Gender (2 rows of Unknown/Invalid)
train$gender <- as.numeric(as.factor(train$gender))
##Converting Weight to numeric
train$weight <- ifelse(train$weight == "[0-25)", 0, train$weight)
train$weight <- ifelse(train$weight == "[25-50)", 1, train$weight)
train$weight <- ifelse(train$weight == "[50-75)", 2, train$weight)
train$weight <- ifelse(train$weight == "[75-100)", 3, train$weight)
train$weight <- ifelse(train$weight == "[100-125)", 4, train$weight)
train$weight <- ifelse(train$weight == "[125-150)", 5, train$weight)
train$weight <- ifelse(train$weight == "[150-175)", 6, train$weight)
train$weight <- ifelse(train$weight == "[175-200)", 7, train$weight)
train$weight <- ifelse(train$weight == ">200", 8, train$weight)
train$weight <- as.numeric(train$weight)
#Converting the following columns to numeric/factors as applicable
train$admission_type_id <- as.numeric(as.factor(train$admission_type_id))
train$discharge_disposition_id <- as.numeric(as.factor(train$discharge_disposition_id))
train$admission_source_id <- as.numeric(as.factor(train$admission_source_id))
train$time_in_hospital <- as.numeric(train$time_in_hospital)
train$payer_code <- as.numeric(as.factor(train$payer_code))
train$medical_specialty <- as.numeric(as.factor(train$medical_specialty))
train$num_lab_procedures <- as.numeric(train$num_lab_procedures)
train$num_procedures <- as.numeric(train$num_procedures)
train$num_medications <- as.numeric(train$num_medications)
train$number_outpatient <- as.numeric(train$number_outpatient)
train$number_emergency <- as.numeric(train$number_emergency)
train$number_inpatient <- as.numeric(train$number_inpatient)
train$diag_1 <- as.numeric(as.factor(train$diag_1))
train$diag_2 <- as.numeric(as.factor(train$diag_2))
train$diag_3 <- as.numeric(as.factor(train$diag_3))
train$number_diagnoses <- as.numeric(train$number_diagnoses)
#Converting max_glu_serum to numeric
train$max_glu_serum <- ifelse(train$max_glu_serum == "None", 0, train$max_glu_serum)
train$max_glu_serum <- ifelse(train$max_glu_serum == "Norm", 1, train$max_glu_serum)
train$max_glu_serum <- ifelse(train$max_glu_serum == ">200", 2, train$max_glu_serum)
train$max_glu_serum <- ifelse(train$max_glu_serum == ">300", 3, train$max_glu_serum)
train$max_glu_serum <- as.numeric(train$max_glu_serum)
#Converting A1Cresult to numeric
train$A1Cresult <- ifelse(train$A1Cresult == "None", 0, train$A1Cresult)
train$A1Cresult <- ifelse(train$A1Cresult == "Norm", 1, train$A1Cresult)
train$A1Cresult <- ifelse(train$A1Cresult == ">7", 2, train$A1Cresult)
train$A1Cresult <- ifelse(train$A1Cresult == ">8", 3, train$A1Cresult)
train$A1Cresult <- as.numeric(train$A1Cresult);
#Columns with over half of the data missing
drops <- c("weight", "payer_code", "medical_specialty")
train <- train[ , !(names(train) %in% drops)]
#Columns having the same value throughout
drops <- c("examide", "citoglipton")
train <- train[ , !(names(train) %in% drops)]
#Columns with very imbalanced categories
drops <- c("chlorpropamide", "acetohexamide", "tolbutamide", "acarbose", "miglitol", "troglitazone", "tolazamide", "glipizide.metformin",
"glimepiride.pioglitazone", "metformin.rosiglitazone", "metformin.pioglitazone", "nateglinide","glyburide.metformin")
train <- train[ , !(names(train) %in% drops)]
#Columns with Numeric and String values
#Can be converted to numeric. Reference: (https://en.wikipedia.org/wiki/List_of_ICD-9_codes)
#Due to limitation of time, dropping it.
drops <- c("diag_1", "diag_2", "diag_3")
train <- train[ , !(names(train) %in% drops)]
#Converting change to numeric
train$change <- as.character(train$change)
train$change [train$change == "Ch"] <- 1
train$change [train$change == "No"] <- 0
train$change <- as.numeric(train$change)
#Converting diabetesMed to numeric
train$diabetesMed <- as.character(train$diabetesMed)
train$diabetesMed [train$diabetesMed == "Yes"] <- 1
train$diabetesMed [train$diabetesMed == "No"] <- 0
train$diabetesMed <- as.numeric(train$diabetesMed)
#Converting metformin, repaglinide, glimepiride, glipizide, glyburide, pioglitazone, rosiglitazone, insulin to numeric
train$metformin <- as.character(train$metformin)
train$repaglinide <- as.character(train$repaglinide)
train$glimepiride <- as.character(train$glimepiride)
train$glipizide <- as.character(train$glipizide)
train$glyburide <- as.character(train$glyburide)
train$pioglitazone <- as.character(train$pioglitazone)
train$rosiglitazone <- as.character(train$rosiglitazone)
train$insulin <- as.character(train$insulin)
train[train == "Down"] <- -1
train[train == "No"] <- 0
train[train == "Steady"] <- 1
train[train == "Up"] <- 2
train$metformin <- as.integer(train$metformin)
train$repaglinide <- as.numeric(train$repaglinide)
train$glimepiride <- as.numeric(train$glimepiride)
train$glipizide <- as.numeric(train$glipizide)
train$glyburide <- as.numeric(train$glyburide)
train$pioglitazone <- as.numeric(train$pioglitazone)
train$rosiglitazone <- as.numeric(train$rosiglitazone)
train$insulin <- as.numeric(train$insulin)
return(train)
}
#Calling the defined function for data preprocessing
train <- preprocessing(train)
#Converting readmitted to numeric
train$readmitted <- as.character(train$readmitted)
train$readmitted[train$readmitted == "Y"] <- 1
train$readmitted[train$readmitted == "N"] <- 0
train$readmitted <- as.numeric(train$readmitted)
#Data Summary after processing
summary(train)
df <- train
#Train-Test Split
set.seed(888)
train.index <- sample(nrow(df), nrow(df)*0.7)
train.df <- df[train.index,]
valid.df <- df[-train.index,]
X_train <- train.df
X_test <- valid.df
y_train <- train.df$readmitted
y_test <- valid.df$readmitted
X_train$readmitted = NULL
X_test$readmitted = NULL
#### XGBoost Classifier ####
X_train <- as.matrix(X_train)
X_test <- as.matrix(X_test)
y_train <- as.matrix(y_train)
y_test <- as.matrix(y_test)
dtrain <- xgb.DMatrix(data = X_train,label = y_train)
dtest <- xgb.DMatrix(data = X_test,label=y_test)
#Since it is an imbalanced dataset, considering AUC as the evaluation metric.
params <- list(
booster = "gbtree",
objective = "binary:logistic",
max_depth = 3,
eta = 0.4,
eval_metric = "auc"
)
xgbcv <- xgb.cv( params = params,
data = dtrain,
nrounds = 200,
nfold = 10,
stratified = T,
print_every_n = 20,
early_stopping_rounds = 10
)
xgb1 <- xgb.train (
params = params,
data = dtrain,
watchlist = list(val=dtest,train=dtrain),
print_every_n = 10,
nrounds = 200,
early_stopping_rounds = 10,
seed = 100
)
#Evaluation
#Training Accuracy
xgbpred_train <- predict (xgb1,dtrain)
#Threshold was set according to the accuracy score used
xgbpred_train <- ifelse (xgbpred_train > 0.12,1,0)
myroc <- roc(y_train, xgbpred_train)
cat("Training Accuracy: ", auc(myroc))
#Testing Accuracy
xgbpred_test <- predict (xgb1,dtest)
#Threshold was set according to the accuracy score used
xgbpred_test <- ifelse (xgbpred_test > 0.12,1,0)
myroc <- roc(y_test, xgbpred_test)
cat("Testing Accuracy: ", auc(myroc))
###### Final Model ######
#Train on the whole data
X_train <- df
y_train <- df$readmitted
X_train$readmitted = NULL
X_train <- as.matrix(X_train)
y_train <- as.matrix(y_train)
dtrain_whole <- xgb.DMatrix(data = X_train,label = y_train)
xgbpred <- predict (xgb1, dtrain_whole)
#Threshold was set according to the accuracy score used
xgbpred <- ifelse (xgbpred > 0.12,1,0)
myroc <- roc(y_train, xgbpred)
cat("Final Model Accuracy: ", auc(myroc))
#Feature Importances
#mat <- xgb.importance (feature_names = colnames(X_train),model = xgb1)
#The plot shows the top 10 important features for this model.
#xgb.plot.importance (importance_matrix = mat[1:15])
#Commenting the code for the plot as the markdown had problems displaying the plot
#The plot gives some interesting insights. Variables like number_inpatient, nu_lab_procedures, num_medication, time_in_hospital are important as one would have imagined.
#--------------------------------------------- PART 2 ---------------------------------------------#
#Prediction
#Reading the test file
test <- read.csv('challengetest_data.csv')
#Creating a new dataframe for probabilities
predicted_probability <- data.frame("encounter_id" = test$encounter_id)
#Calling the preprocessing function
test <- preprocessing(test)
#Creating a matrix for XGB
dtest_final <- xgb.DMatrix(data = as.matrix(test))
#Using the XGB model to predict probability
xgbpred_final_test <- predict (xgb1, dtest_final)
#Adding a column of probability to the new dataframe
predicted_probability$predicted_probability <- xgbpred_final_test
#Writing to a CSV file
write.csv(predicted_probability, file = "patil_abhishek.csv")
#The accuracy is not great but certainly better than a random guess.
#Some of the things I would have loved to try out but couldn't due to limited time:
#1. EDA to visualize the patterns among the variables and their relationship with the dependent variable.
#2. Correlation Plot Analysis, Hypothesis testing.
#3. Detailed Feature Engineering (Using Dummy Variables, dealing with missing values, etc.)
#4. Try out different models with Grid Search to compare performance.
#This was part of a challenge that was to be completed in 3 hours. Hence, this was just a preliminary investigation.
#Any comments on what could be improved in this are appreciated.Thanks.
#--------------------------------------------- THE END ---------------------------------------------#