-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrksolvers.f90
65 lines (54 loc) · 1.89 KB
/
rksolvers.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
MOdule rksolvers
use iso_fortran_env, only: real64
implicit none
interface
function odefun(x, y, p) result(v)
use iso_fortran_env, only: real64
implicit none
real(kind=real64) :: v(3)
real(kind=real64), intent(in) :: x
real(kind=real64), intent(in) :: y(3)
real(kind=real64), intent(in) :: p
end function
end interface
contains
!function rk4(y, dydx, n, x, h, f, param) result(yout)
! integer, intent(in) :: n
! real(kind=real64), intent(in) :: h, x, dydx(n), y(n)
! procedure(odefun) :: f
! real(kind=real64) :: yout(n)
! !real(kind=real64), dimension(3), external :: odefun
! integer :: i
! real(kind=real64) :: hh, xh, dym(n), dyt(n), yt(n)
! real(kind=real64) :: param
! hh = h * 0.5
! xh = x + hh
! yt(:) = y(:) + hh * dydx(:)
! dyt = f(xh, yt, param)
! yt(:) = y(:) + hh * dyt(:)
! dym = f(xh, yt, param)
! yt(:) = y(:) + h*dym(:)
! dym(:) = dyt(1:n) + dym(:)
! dyt = f(x+h, yt, param)
! yout(1:n) = y(:) + (h/6.0) * (dydx(:) + dyt(:) + 2.0*dym(:))
!end function
! single step of RK4
function rk4(f, x0, y0, h, odefun_param) result(yout)
procedure(odefun) :: f
real(kind=real64) :: x0
real(kind=real64) :: y0(:)
real(kind=real64) :: h
real(kind=real64) :: odefun_param
real(kind=real64), allocatable :: yout(:)
integer :: n
real(kind=real64), allocatable :: k1(:), k2(:), k3(:), k4(:)
n = size(y0)
allocate(k1(n), k2(n), k3(n), k4(n), yout(n))
! basically just lifted from wikipedia
k1 = f(x0, y0, odefun_param)
k2 = f(x0 + h/2, y0 + h/2 * k1, odefun_param)
k3 = f(x0 + h/2, y0 + h/2 * k2, odefun_param)
k4 = f(x0 + h, y0 + h * k3, odefun_param)
yout = y0 + h/6 * (k1 + 2*k2 + 2*k3 + k4)
end function
end module