-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpos_extraction.py
226 lines (174 loc) · 7.7 KB
/
pos_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from flair.data import Sentence
from flair.models import SequenceTagger
import re
import rdflib
from word_forms.word_forms import get_word_forms
import inflect
class POS_extractor:
def __init__(self):
print('Loading POS model...')
self.pos_model = SequenceTagger.load('models/pos1')
self.inflect_engine = inflect.engine()
# noun mapper to film properties
self.noun_mapper = {
'cast member' : set(['actor', 'actress', 'cast']),
'genre': set(['type', 'kind']),
'publication date': set(['release', 'date', 'airdate', 'publication', 'launch', 'broadcast']),
'executive producer': set(['showrunner']),
'screenwriter': set(['scriptwriter', 'screenplay', 'teleplay', 'writer', 'script', 'scenarist', 'story']),
'director of photography': set(['cinematographer', 'DOP', 'dop']),
'film editor': set(['editor']),
'production designer': set(['designer']),
'box office': set(['box', 'office', 'funding']),
'cost': set(['budget', 'cost']),
'nominated for': set(['nomination', 'award', 'finalist', 'shortlist', 'selection']),
'costume designer': set(['costume']),
'official website' : set(['website', 'site']),
'filming location' : set(['flocation']),
'narrative website' : set(['nlocation']),
'production company' : set(['company']),
'country of origin': set(['origin', 'country'])
}
self.noun_film_properties = set()
for v in self.noun_mapper.values():
self.noun_film_properties.update(v)
def get_pos(self, text):
'''
Method to run POOS tag on input text
returns the words and their pos tags
'''
sentence = Sentence(text)
self.pos_model.predict(sentence)
pos_words = []
pos_tags = []
for entity in sentence:
pos_words.append(entity.text)
pos_tags.append(entity.get_labels('pos')[0].value)
print('POS')
print(pos_words)
print(pos_tags)
print()
pop = list(zip(pos_words, pos_tags))
return pop
def _pos_to_word_index(self, pos_tags, Osent):
res = {}
for i in pos_tags:
w = i[0]
p = i[1]
try:
if re.search(w.lower(), Osent.lower()):
if res.get(p):
res[p].append(w)
else:
res[p] = [w]
except:
continue
return res
def _getRelation_URI_ID(self, graph, noun, WDT):
'''
recieves nouns (relations) and converts them to their URI ID
'''
query = f'''
prefix wdt: <http://www.wikidata.org/prop/direct/>
prefix wd: <http://www.wikidata.org/entity/>
SELECT ?res
WHERE{{
?res rdfs:label "{noun}"@en.
}}'''
URIs = list(filter(lambda x: WDT in x, [x[0] for x in list(graph.query(query))]))
res = []
for uri in URIs:
if WDT in uri:
relId = re.match("{}(.*)".format(WDT), uri)[1]
res.append(relId)
return res
def get_relations(self, pos_tags, Owords, graph, WDT, film_properties):
'''
Method to retrieve the relations of the Input
Pattern matching is performed for relations that consist of multiple words
Verbs are converted to nouns and nouns are used to find a relation
Plural form of nouns are singularized
Only nouns that are associated with relational film properties are considered
'''
properties = set()
properties.update(self.noun_film_properties)
properties.update(film_properties)
Osent = ' '.join(Owords)
# pos tags mapping on 'Other' words
pos_text_dict = self._pos_to_word_index(pos_tags, Osent)
print(pos_text_dict)
res = []
# for filming location property
fil = [
re.search('where', Osent.lower()) and re.search('film', Osent.lower()),
re.search('location', Osent.lower()) and re.search('film', Osent.lower()),
re.search('place', Osent.lower()) and re.search('film', Osent.lower()),
re.search('shooting', Osent.lower()) and re.search('location', Osent.lower()),
re.search('shot in', Osent.lower()),
re.search('filmed in', Osent.lower())
]
if any(fil):
res.append({'relation':'filming location', 'ids': ['P915']})
#for narrative location property
narr = [
re.search('where', Osent.lower()) and re.search('narrat', Osent.lower()),
re.search('where', Osent.lower()) and re.search('set', Osent.lower()),
re.search('where', Osent.lower()) and re.search('takes place', Osent.lower()),
re.search('place', Osent.lower()) and re.search('set', Osent.lower()),
re.search('location', Osent.lower()) and re.search('set', Osent.lower()),
re.search('location', Osent.lower()) and re.search('narrat', Osent.lower()),
re.search('set', Osent.lower()) and re.search('work', Osent.lower()),
]
if any(narr):
res.append({'relation':'narrative location', 'ids': ['P840']})
# for MPA rating property
if re.search('MPA', Osent):
res.append({'relation':'MPAA rating', 'ids': ['P1657']})
picture = [re.search('look like', Osent.lower()),
re.search('looks like', Osent.lower()),
re.search('picture', Osent.lower()),
re.search('poster', Osent.lower())]
# for image property
if any(picture):
res.append({'relation': 'IMDb ID', 'ids': ['P345']})
# for movie recommendation
recom = [re.search('recommend', Osent.lower()),
re.search('recommendation', Osent.lower()),
re.search('suggest', Osent.lower()),
re.search('suggestion', Osent.lower())]
if any(recom):
res.append({'relation': 'recommendation', 'ids': []})
nouns = []
# convert verb to noun
# convert plural noun to singular noun
# each word, check if noun is in film properties
for pos in pos_text_dict.keys():
if pos[:2] == 'VB':
for w in pos_text_dict[pos]:
noun_conversions = get_word_forms(w.lower())['n']
matching_conversions = set(properties).intersection(noun_conversions)
for noun in matching_conversions:
if noun in film_properties:
nouns.append(noun)
elif noun in self.noun_film_properties:
for k, v in self.noun_mapper.items():
if noun in v:
nouns.append(k)
break
elif pos[:2] == 'NN':
for w in pos_text_dict[pos]:
#check if plural
if pos[-1] == 'S':
noun = self.inflect_engine.singular_noun(w.lower())
else:
noun = w.lower()
if noun in film_properties:
nouns.append(noun)
elif noun in self.noun_film_properties:
for k, v in self.noun_mapper.items():
if noun in v:
nouns.append(k)
break
for noun in set(nouns):
res.append({'relation': noun, 'ids': self._getRelation_URI_ID(graph, noun, WDT)})
return res