forked from husmen/DoCA_GUI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathocr.py
248 lines (198 loc) · 8.75 KB
/
ocr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
""" module for performing OCR """
import cv2
import couchdb
import numpy as np
import fitz
try:
import Image
except ImportError:
from PIL import Image
from wand.image import Image as WandImage
import pytesseract
import textract
from db_handler import *
class OCR():
def __init__(self, files, lang = None, search = None, file_type = None):
self.files = files
self.lang = lang
self.search = search.lower()
self.text = []
self.db_server = db_handler()
res = self.db_server.query(db_ocr,["_id","content"])
self.ocr_history = {}
for row in res:
self.ocr_history[row.key[0]] = row.key[1]
#print(self.ocr_history)
for f in files:
#print(pytesseract.image_to_string(Image.open(f), lang=None))
print("# OCR for: {} #".format(f))
if f in self.ocr_history.keys():
self.text.append(self.ocr_history[f])
elif file_type == "pdf":
doc = fitz.open(f)
fontlist = doc.getPageFontList(0)
if fontlist == [] :
imgs = self.pdf2img(f)
tmp2 = ""
for img in imgs:
ocv_img = self.img_preprocess(img)
tmp = str(pytesseract.image_to_string(ocv_img, lang=self.lang))
tmp2 += tmp
self.text.append(tmp2)
else :
tmp = textract.process(f, encoding='utf-8')
self.text.append(tmp)
self.db_server.save(db_ocr, {'content': tmp},doc_id = f)
else:
pil_img = Image.open(f)
ocv_img = cv2.imread(f)
ocv_img = self.img_preprocess(ocv_img)
tmp = pytesseract.image_to_string(ocv_img, lang=self.lang)
self.text.append(tmp)
#print(tmp)
self.db_server.save(db_ocr, {'content': tmp},doc_id = f)
if self.search:
res = self.db_server.query(db_sh,["term"],query_key="_id", query_value="txt_in_img")
#print(type(res), res)
res2 = []
for row in res:
for _ in row.key[0]:
res2.append(_)
#print(type(res2), res2)
res3 = set(res2)
#print(type(res3), res3)
if self.search not in res3:
res3.add(self.search)
self.db_server.save(db_sh,{'term' : list(res3)}, doc_id = "txt_in_img")
for _ in range(0,len(files)):
self.find(_)
def skew_correction(self, img):
""" """
self.img = img
# flip background and forground
self.img = cv2.bitwise_not(self.img)
# threshold the image, setting all foreground pixels to 255 and all background pixels to 0
thresh = cv2.threshold(self.img, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
#thresh2 = cv2.threshold(img,222,255,cv2.THRESH_BINARY)[1]
#thresh2 = cv2.threshold(self.img, 255, 0, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
#cv2.imshow("thresh1", thresh)
#cv2.imshow("thresh2", thresh2)
#cv2.waitKey(0)
#cv2.imshow("original", img)
#cv2.imshow("thresh1", thresh)
#cv2.imshow("thresh2", thresh2)
#self.img2 = cv2.bitwise_not(thresh)
#cv2.imshow("flipped", self.img2)
# grab the (x, y) coordinates of all pixel values that
# are greater than zero, then use these coordinates to
# compute a rotated bounding box that contains all
# coordinates
coords = np.column_stack(np.where(thresh > 0))
angle = cv2.minAreaRect(coords)[-1]
# the `cv2.minAreaRect` function returns values in the
# range [-90, 0); as the rectangle rotates clockwise the
# returned angle trends to 0 -- in this special case we
# need to add 90 degrees to the angle
if angle < -45:
angle = -(90 + angle)
# otherwise, just take the inverse of the angle to make
# it positive
else:
angle = -angle
# rotate the image to deskew it
(h, w) = self.img.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
rotated = cv2.warpAffine(img, M, (w, h),
flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
# show the output image
#print("[INFO] angle: {:.3f}".format(angle))
#cv2.imshow("Input", img)
#cv2.imshow("Rotated", rotated)
cv2.waitKey(0)
return rotated
def img_denoise(self, img):
self.img = img
# adjust contrast
self.img = cv2.multiply(self.img, 1.2)
# create a kernel for the erode() function
kernel = np.ones((1, 1), np.uint8)
# erode() the image to bolden the text
self.img = cv2.erode(self.img, kernel, iterations=1)
return self.img
def clean_bg(self,img):
self.img = img
# Gaussian filtering
#self.img = cv2.blur(self.img,(3,3),0)
#blur = cv2.GaussianBlur(self.img,(3,3),0)
#smooth = cv2.addWeighted(blur,1.5,img,-0.5,0)
# threshhold
#self.img = cv2.threshold(self.img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
self.img = cv2.bitwise_not(self.img)
self.img = cv2.threshold(self.img,200,255,cv2.THRESH_TRUNC)[1]
self.img = cv2.bitwise_not(self.img)
#self.img = cv2.bitwise_not(self.img)
#self.img = cv2.threshold(self.img,255,255,cv2.THRESH_TRUNC)[1]
#self.img = cv2.bitwise_not(self.img)
return self.img
#thresh = cv2.threshold(self.img, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
#thresh2 = cv2.threshold(img,222,255,cv2.THRESH_BINARY)[1]
def find(self, f_index):
print("# searching for {} in {}".format(self.search, self.files[f_index]))
self.res = self.find_all(self.search,self.text[f_index].lower())
self.res2 = list(self.res)
#print(self.res2)
if len(self.res2) > 0:
#data = {'img_id' : self.files[_], 'kullanici': 'kubra', "class" :{self.search: True}, 'locations': str(self.res2) }
#data = {'img_id' : self.files[_], 'kullanici': 'kubra', "class" :{self.search: True}}
#self.db_server.save(db_ic_t,data,doc_id = self.files[_])
db_res = self.db_server.query(db_ic_t,["class"],query_key="_id", query_value=self.files[f_index])
#print(type(db_res), db_res)
db_res2 = []
for row in db_res:
for _ in row.key[0]:
db_res2.append(_)
#print(type(db_res2), db_res2)
db_res3 = set(db_res2)
#print(type(db_res3), db_res3)
if self.search not in db_res3:
db_res3.add(self.search)
self.db_server.save(db_ic_t,{'class' : list(db_res3)}, doc_id = self.files[f_index])
def find_all(self, sub, a_str):
#print(type(sub),type(a_str))
start = 0
while True:
start = a_str.find(sub, start)
if start == -1: return
yield start
start += len(sub) # use start += 1 to find overlapping matches
def pdf2img(self, file):
name = os.path.basename(file)
print("### Processing {} ###".format(name))
img_list = []
img_buffer=None
with WandImage(filename=file, resolution=200) as img:
#img_list.append(img)
img_buffer=np.asarray(bytearray(img.make_blob()), dtype=np.uint8)
if img_buffer is not None:
retval = cv2.imdecode(img_buffer, cv2.IMREAD_UNCHANGED)
img_list.append(retval)
return img_list
def img_preprocess(self, img):
# grayscale
ocv_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# clean background
ocv_img = self.clean_bg(ocv_img)
# denoising
ocv_img = cv2.fastNlMeansDenoising(ocv_img,None,15,15,10)
#ocv_img = self.img_denoise(ocv_img)
# skew correction
ocv_img = self.skew_correction(ocv_img)
# resize
height, width = ocv_img.shape[:2]
ocv_img = cv2.resize(ocv_img, (4*width,4*height))
#cv2.imwrite("saved.jpg",ocv_img)
# sharpen
#blurred_image = cv2.blur(resized_image,(3,3))
#cv2.imwrite("saved_.jpg",blurred_image)
return ocv_img