-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmake_predicted_xmin_datasets.py
327 lines (228 loc) · 9.27 KB
/
make_predicted_xmin_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import jsonlines
import os
from tqdm import tqdm
import numpy as np
from collections import defaultdict
from copy import deepcopy
import argparse
parser = argparse.ArgumentParser(description='calculate rouge scores')
parser.add_argument(
'-dataset',
dest='dataset',
help='Dataset name (either medical or ami)',
type=str,
required=True,
)
parser.add_argument(
'-ser_dir',
dest='ser_dir',
help='serialization directory containing validation and test outputs',
type=str,
required=True,
)
parser.add_argument(
'-mode',
dest='mode',
help='unilabel/multilabel prediction',
default='multilabel',
type=str
)
args=parser.parse_args()
dataset = args.dataset
ser_dir = args.ser_dir
dataset_dir = f"dataset_{dataset}"
mode = args.mode
if mode=="unilabel":
val_fpath = os.path.join(ser_dir, "val_outputs.jsonl")
val_predictions = list(jsonlines.open(val_fpath))
test_fpath = os.path.join(ser_dir, "test_outputs.jsonl")
test_predictions = list(jsonlines.open(test_fpath))
all_ground_truths=[]
all_predictions=[]
for elem in val_predictions:
all_predictions.append(elem["prediction"][0])
all_ground_truths.append(elem["ground_truth"])
all_ground_truths = np.concatenate(all_ground_truths, axis=0)
all_predictions = np.concatenate(all_predictions, axis=0)
base_rates = all_ground_truths.sum(axis=0)/len(all_ground_truths)
thresholds = []
for j in range(all_predictions.shape[1]):
br = base_rates[j]
sec_pred_probs = all_predictions[:,j]
cutoff = np.quantile(sec_pred_probs,1-br)
thresholds.append(cutoff)
def get_allxmin_dp(base_dp):
# pdb.set_trace()
allxmin_utterances = []
test_texts = base_dp["input"]
y_pred = np.array(base_dp["prediction"][0])
threshold = thresholds[0]
sec_pred_probs = y_pred[:,0]
is_xmin = sec_pred_probs>=threshold
for line, pred in zip(test_texts, is_xmin):
if pred:
allxmin_utterances.append(line)
dp_to_return = {"case_id":base_dp['case_id'],
"article_lines":allxmin_utterances,
"summary_lines":["dummy"]}
# pdb.set_trace()
return dp_to_return
allxmin_dps = []
for dp in tqdm(test_predictions):
new_dp = get_allxmin_dp(dp)
allxmin_dps.append(new_dp)
existing_caseids = set()
for dp in allxmin_dps:
existing_caseids.add(dp["case_id"])
print(f'{len(existing_caseids)} cases found in the outgoing file')
output_path = os.path.join(ser_dir, "predicted_allxmin_test.jsonl")
with jsonlines.open(output_path, "w") as w:
for dp in allxmin_dps:
w.write(dp)
exit(0)
# GETTING LABEL DICT
temp_dataset_path = os.path.join(dataset_dir, "sectionwise_xmin_multilabel_classification", "test.jsonl")
temp_dataset=list(jsonlines.open(temp_dataset_path, "r"))
label_dict = temp_dataset[0]["label_dict"]
label_arr = ["_" for _ in range(len(label_dict.keys()))]
for label, idx in label_dict.items():
label_arr[idx]=label
val_fpath = os.path.join(ser_dir, "val_outputs.jsonl")
val_predictions = list(jsonlines.open(val_fpath))
test_fpath = os.path.join(ser_dir, "test_outputs.jsonl")
test_predictions = list(jsonlines.open(test_fpath))
all_ground_truths=[]
all_predictions=[]
for elem in val_predictions:
all_predictions.append(elem["prediction"][0])
all_ground_truths.append(elem["ground_truth"])
all_ground_truths = np.concatenate(all_ground_truths, axis=0)
all_predictions = np.concatenate(all_predictions, axis=0)
base_rates = all_ground_truths.sum(axis=0)/len(all_ground_truths)
thresholds = []
for j in range(all_predictions.shape[1]):
br = base_rates[j]
sec_pred_probs = all_predictions[:,j]
cutoff = np.quantile(sec_pred_probs,1-br)
thresholds.append(cutoff)
thresholds = np.array(thresholds)
print("Thresholds=", thresholds)
def get_sectionwise_dps(base_dp):
sectionwise_xmins = defaultdict(list)
test_texts = base_dp["input"]
y_pred = np.array(base_dp["prediction"][0])
for j, section_name in enumerate(label_arr):
threshold = thresholds[j]
sec_pred_probs = y_pred[:,j]
is_xmin = sec_pred_probs>=threshold
for line, pred in zip(test_texts, is_xmin):
if pred:
sectionwise_xmins[section_name].append(line)
dps_to_return=[]
for section, lines in sectionwise_xmins.items():
dps_to_return.append({"case_id":base_dp['case_id'], "article_lines":lines, "summary_lines":["dummy"], "section":section})
return dps_to_return
sectionwise_allxmin_dps = []
for dp in tqdm(test_predictions):
new_dps = get_sectionwise_dps(dp)
sectionwise_allxmin_dps.extend(new_dps)
existing_caseids = set()
for dp in sectionwise_allxmin_dps:
existing_caseids.add(dp["case_id"])
print(f'{len(existing_caseids)} cases found in the outgoing file')
output_path = os.path.join(ser_dir, "predicted_sectionwise_allxmin.jsonl")
with jsonlines.open(output_path, "w") as w:
for dp in sectionwise_allxmin_dps:
w.write(dp)
###############################
######## MAKING CLUSTERS
###############################
def get_intervals(arr, cohesion=0):
arr=list(arr)
arr2=deepcopy(arr)
# making the
for i, elem in enumerate(arr):
if elem!=1:
continue
lookahead = arr[i+1:i+1+cohesion+1]
if 1 in lookahead:
first_occ = lookahead.index(1)
for j in range(i+1,i+1+first_occ):
if j<len(arr2):
arr2[j]=1
finished_intervals=[]
inside_interval=False
ci_begin=None
arr2=list(arr2) # the next step wont work if arr is not a list
new_arr=[0]+arr2+[0] # for starting in the beginning and closing at the end
for pos in range(1,len(new_arr)):
prev_val = new_arr[pos-1]
next_val = new_arr[pos]
if prev_val==0 and next_val==1:
assert inside_interval==False
ci_begin=pos
inside_interval=True
elif prev_val==1 and next_val==0:
assert inside_interval==True
finished_intervals.append((ci_begin, pos-1))
inside_interval=False
else:
continue
finished_intervals = [(i-1,j-1) for (i,j) in finished_intervals] # shift indices by 1 since we prepended 0 before this
return finished_intervals
def get_entrywise_dps(base_dp, cohesion):
test_texts = base_dp["input"]
y_pred = np.array(base_dp["prediction"][0])
dps_to_return=[]
for j, section_name in enumerate(label_arr):
threshold = thresholds[j]
sec_pred_probs = y_pred[:,j]
is_xmin = sec_pred_probs>=threshold
labels=is_xmin.astype(int)
snippet_intervals = get_intervals(labels, cohesion)
for _i, interval in enumerate(snippet_intervals):
# CHOICE1: add the sentences in between in the input cluster
# relevant_input_lines = test_texts[interval[0]: interval[1]+1]
# CHOICE2: do not add the sentences in between in the input cluster
relevant_input_lines = []
for idx in range(interval[0], interval[1]+1):
if labels[idx]==1:
relevant_input_lines.append(test_texts[idx])
dps_to_return.append({
'article_lines': relevant_input_lines,
'summary_lines': ['dummy'],
'case_id': base_dp['case_id'],
'index_in_note': _i,
'section': section_name
})
return dps_to_return
# FIGURING OUT THE OPTIMAL VALUE OF COHESION PARAMETER FROM VALIDATION DATA
temp_dataset_path = os.path.join(dataset_dir, "entrywise_summarization", "val.jsonl")
temp_dataset=list(jsonlines.open(temp_dataset_path, "r"))
gt_num_clusters=len(temp_dataset)
chosen_cohesion_param=[]
for cohesion_param in range(0,100):
# print(f"trying out cohesion parameter = {cohesion_param}")
entrywise_xmin_dps = []
for dp in val_predictions:
new_dps = get_entrywise_dps(dp, cohesion=cohesion_param)
entrywise_xmin_dps.extend(new_dps)
print(f"ground truth has {gt_num_clusters} clusters, cohesion={cohesion_param} created {len(entrywise_xmin_dps)}")
if len(entrywise_xmin_dps)<gt_num_clusters:
chosen_cohesion_param.append(cohesion_param)
break
chosen_cohesion_param=chosen_cohesion_param[0]
print(f"chosen_cohesion_param if {chosen_cohesion_param}")
######################
entrywise_xmin_dps = []
for dp in tqdm(test_predictions):
new_dps = get_entrywise_dps(dp, cohesion=chosen_cohesion_param)
entrywise_xmin_dps.extend(new_dps)
existing_caseids = set()
for dp in entrywise_xmin_dps:
existing_caseids.add(dp["case_id"])
print(f'{len(existing_caseids)} cases found in the outgoing file with {len(entrywise_xmin_dps)} clusters in total')
output_path = os.path.join(ser_dir, "predicted_entrywise_gapped.jsonl")
with jsonlines.open(output_path, "w") as w:
for dp in entrywise_xmin_dps:
w.write(dp)