-
Notifications
You must be signed in to change notification settings - Fork 111
/
solution.cpp
42 lines (38 loc) · 1.24 KB
/
solution.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/*
During each move, a player chooses one prime number and removes it (as well as its multiples) from the set.
Because a player cannot move unless there is at least one prime number in the set and a single prime number is removed during each turn,
we simply need to count the number of primes in the inclusive range .
If the number of primes is odd, Alice will remove the last prime number and win the game;
otherwise, this number is even and Bob will choose the last prime number, winning the game.
You can get a 50% score if you generate prime numbers using a naive method.
For a full score, you should use a Sieve of Eratosthenes algorithm.
*/
#include <bits/stdc++.h>
using namespace std;
vector<bool> vec(100001);
bool peven;
void precompute(){
for(int a=3;a<=100000;a++){
bool div=false;
for(int b=2;b<=sqrt(a);b++){
if(a%b==0) {div=true; break;}
}
if(div) vec[a]=peven;
else {peven=!peven; vec[a]=peven;}
}
}
int main() {
vec[0]=vec[1]=true;
vec[2]=false;
peven=false;
precompute();
int t;
cin>>t;
while(t--){
int k;
cin>>k;
if(vec[k]) cout<<"Bob"<<endl;
else cout<<"Alice"<<endl;
}
return 0;
}