-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathsolution.py
58 lines (45 loc) · 1.58 KB
/
solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#!/bin/python3
class Graph:
def __init__(self, n_vertices):
self.n_vertices = n_vertices
self.edges = [set() for i in xrange(n_vertices)]
def set_value(self, i, val):
self.value[i] = val
def add_edge(self, i, j):
self.edges[i].add(j)
self.edges[j].add(i)
def connected_components(self):
remaining = set(xrange(self.n_vertices))
discovered = [False]*self.n_vertices
while remaining:
# get arbitrary start element
start = remaining.pop()
# initialize component and stack
component = []
stack = [start]
while stack:
u = stack.pop()
if not discovered[u]:
component.append(u)
discovered[u] = True
for neighbor in self.edges[u]:
stack.append(neighbor)
# remove component from remaining
for v in component:
if v==start: continue
else: remaining.remove(v)
yield component
choose3 = lambda n: 0 if n<3 else n*(n-1)*(n-2)/6 #optimized calc of binomial(n,3)
choose2 = lambda n: 0 if n<2 else n*(n-1) /2 #optimized calc of binomial(n,2)
N = int(raw_input())
G = Graph(N)
for _ in xrange(N-1):
u,v,color = raw_input().strip().split()
if color == 'b':
G.add_edge(int(u)-1,int(v)-1)
total = choose3(N)
for component in G.connected_components():
size = len(component)
#// subtract all triplets build from 2 vertices of the components and 1 other vertex
total -= choose3(size) + choose2(size) * (N-size) #total triplets
print total % (10**9 + 7) #If the answer is greater than 10^9 + 7, print the answer modulo (%) 10^9 + 7.