-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathsolution.cpp
169 lines (163 loc) · 4.34 KB
/
solution.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#include <algorithm>
#include <cmath>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <type_traits>
#include <vector>
using namespace std;
#define FOR(i, a, b) for (remove_cv<remove_reference<decltype(b)>::type>::type i = (a); i < (b); i++)
#define REP(i, n) FOR(i, 0, n)
#define ROF(i, a, b) for (remove_cv<remove_reference<decltype(b)>::type>::type i = (b); --i >= (a); )
// I recommend skipping this problem. The problem statement is way too convoluted.
// However, here are some takeaway concepts from this problem:
// - Implementing a custom BigInt as a byte[]
// - Implementing log2(int n)
// - Realizing that our algorithm can process the giant numbers in portions
// - Runtime: O(n + m) where n = # of digits in L, m = # of digits in R (for interval [L,R]).
// - Numbers can literally have millions of digits in this problem. An "int" or "long" is not big enough to store these numbers. Although Java's BigInteger is big enough, it turns out to be too slow for this problem. I wrote a custom "BigInt" class to speed up calculations.
// - To achieve linear runtime, we need an algorithm that splits up these giant numbers into portions and processes them separately. A great way to do this is to split by level, as done below.
// - This was a very difficult problem. You must have both linear runtime and efficient code to pass all testcases.
const long N = 1000001, D = 16, TEN = long(pow(10.0, D));
char L[N+1], R[N+1];
struct Big {
vector<long> a;
Big() {}
Big(long o) : a(1, o) {}
Big(char* s, long k) : a((k+D-1)/D, 0) {
for (long t = 0, j, i = 0; i < k; i = j) {
long x = 0;
j = min(i+D, k);
ROF(p, i, j)
x = x*10+s[p]-'0';
a[t++] = x;
}
shrink();
}
long n() const { return a.size(); }
operator bool() const { return ! (a.size() == 1 && ! a.back()); }
long operator[](size_t i) const { return a[i]; }
long& operator[](size_t i) { return a[i]; }
Big operator+(const Big& o) const {
Big r;
r.a.assign(max(n(), o.n()), 0);
long i, c = 0;
for (i = 0; i < n() || i < o.n(); i++) {
r[i] = (i < n() ? a[i] : 0) + (i < o.n() ? o[i] : 0) + c;
c = r[i] / TEN;
r[i] %= TEN;
}
if (c)
r.a.push_back(c);
return r;
}
Big operator+(long o) const {
Big r;
r.a.assign(n(), 0);
long i, c = o;
REP(i, n()) {
r[i] = a[i] + c;
c = r[i] / TEN;
r[i] %= TEN;
}
if (c)
r.a.push_back(c);
return r;
}
Big operator-(const Big& o) const {
Big r;
r.a.assign(n(), 0);
long c = 0;
REP(i, n()) {
r[i] = a[i] - (i < o.n() ? o[i] : 0) - c;
if (r[i] < 0)
c = 1, r[i] += TEN;
else
c = 0;
}
r.shrink();
return r;
}
Big operator-(long o) const {
Big r;
r.a.assign(n(), 0);
long i, c = o;
REP(i, n()) {
r[i] = a[i] - c;
if (r[i] < 0)
c = 1, r[i] += TEN;
else
c = 0;
}
r.shrink();
return r;
}
void shrink() {
while (n() > 1 && ! a.back())
a.pop_back();
}
friend ostream& operator<<(ostream& os, const Big& o) {
os << o[o.n()-1];
ROF(i, 0, o.n()-1)
os << setw(D) << setfill('0') << o[i];
return os;
}
static Big ten(long n) {
Big r;
r.a.assign(n/D+1, 0);
r.a[n/D] = pow(10.0, n%D);
return r;
}
};
int main()
{
cin.tie(0);
ios_base::sync_with_stdio(0);
cin >> L >> R;
long n = strlen(R), t = strlen(L);
reverse(L, L+t);
reverse(R, R+n);
fill_n(L+t, n-t, '0');
for (t = 0; L[t] == '0'; t++)
L[t] = '9';
L[t]--;
t = n-1;
while (t >= 0 && L[t] == R[t])
t--;
vector<Big> hd, tl;
long i = 0, c = 0;
for (long k = 0, j; (j = 1L << k++) <= t; i = j) {
Big x(L+i, j-i);
x = x + c;
if (x)
c = 1, hd.push_back(Big::ten(j-i) - x);
else
hd.push_back(0);
tl.push_back(Big(R+i, j-i));
}
{
Big x(Big(R+i, n-i) - Big(L+i, n-i) - c);
if (x)
hd.push_back(x);
else {
while (! hd.back() && ! tl.back())
hd.pop_back(), tl.pop_back();
hd.back() = hd.back() + tl.back();
tl.pop_back();
}
}
long ans = 0;
for (auto& x: hd)
if (x)
ans++;
for (auto& x: tl)
if (x)
ans++;
cout << ans << '\n';
REP(i, hd.size())
if (hd[i])
cout << i << ' ' << hd[i] << '\n';
ROF(i, 0, (long)tl.size())
if (tl[i])
cout << i << ' ' << tl[i] << '\n';
}