-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathsolution.cpp
80 lines (70 loc) · 2.11 KB
/
solution.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#include <bits/stdc++.h>
using namespace std;
class Node {
public:
int data;
Node *left;
Node *right;
Node(int d) {
data = d;
left = NULL;
right = NULL;
}
};
class Solution {
public:
Node* insert(Node* root, int data) {
if(root == NULL) {
return new Node(data);
} else {
Node* cur;
if(data <= root->data) {
cur = insert(root->left, data);
root->left = cur;
} else {
cur = insert(root->right, data);
root->right = cur;
}
return root;
}
}
/*
class Node {
public:
int data;
Node *left;
Node *right;
Node(int d) {
data = d;
left = NULL;
right = NULL;
}
};
*/
// This is a C++ function to print the level Order Traversal
// Level Order Traversal - Printing level by level from top
// Hence at every level we need to store node's which are there and then print thier data
// and then move forward.
// Therefore We would need a Queue Data Structure.
void levelOrder(Node *root)
{
queue<Node*> q;
q.emplace(root); // Pushing root node at 0 level
while(!q.empty()) // We will Keep pushing Nodes till we reach end.
{
Node *p = q.front(); // At each node in Queue we will print its data and its work is done.
q.pop(); // So we will remove it from queue.
cout<<p->data<<" "; //printing data
if(p->left)
{
q.emplace(p->left); // If left child exist push it into queue.
}
if(p->right)
{
q.emplace(p->right); // If right child exist push it into the queue.
}
}
}
}; //End of Solution
// Time complexity - O(nodes) = O(n)
// Time complexity - O(nodes) = O(n) .. for queue