-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
145 lines (129 loc) · 5.97 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from pathlib import Path
import streamlit as st
from PIL import Image
# --- PATH SETTINGS ---
current_dir = Path(__file__).parent if "__file__" in locals() else Path.cwd()
css_file = current_dir / "styles" / "main.css"
resume_file = current_dir / "assets" / "Karol_CV.pdf"
profile_pic = current_dir / "assets" / "profile-pic.png"
# --- GENERAL SETTINGS ---
PAGE_TITLE = "💼 Digital CV | Adnan Karol"
PAGE_ICON = "🌟"
NAME = "Adnan Karol"
DESCRIPTION = "Full-Stack Data Scientist at SURU - Part of LIXIL 🌐"
EMAIL = "📫 adnanmushtaq5@gmail.com"
SOCIAL_MEDIA = {
"LinkedIn": "https://www.linkedin.com/in/adnan-karol-aa1666179/",
"GitHub": "https://github.com/adnankarol",
"Medium": "https://adnankarol.medium.com/",
}
st.set_page_config(page_title=PAGE_TITLE, page_icon=PAGE_ICON)
# --- LOAD CSS, PDF & PROFILE PIC ---
with open(css_file) as f:
st.markdown("<style>{}</style>".format(f.read()), unsafe_allow_html=True)
with open(resume_file, "rb") as pdf_file:
PDFbyte = pdf_file.read()
profile_pic = Image.open(profile_pic)
# --- HERO SECTION ---
col1, col2 = st.columns([1, 2], gap="small")
with col1:
st.image(profile_pic, width=230)
with col2:
st.title(NAME)
st.write(DESCRIPTION)
st.download_button(
label="📄 Download Resume",
data=PDFbyte,
file_name=resume_file.name,
mime="application/octet-stream",
)
st.write(EMAIL)
# --- SOCIAL LINKS ---
st.write("🌐 Connect with me:")
cols = st.columns(len(SOCIAL_MEDIA))
for index, (platform, link) in enumerate(SOCIAL_MEDIA.items()):
cols[index].markdown(f"[{platform}]({link})")
# --- EXPERIENCE & QUALIFICATIONS ---
st.write("🚀 **Experience & Qualifications**")
st.write(
"""
- ✅ 3+ years of experience extracting insights from data
- 🧠 Skilled in Data Science, Machine Learning, and Python
- 📊 Strong foundation in statistics and data analysis
- 💼 Collaborative team player with a proactive approach
"""
)
# --- SKILLS ---
st.write("💡 **Skills and Technologies**")
st.write(
"""
- **👩💻 Programming:** Python 🐍
- **🧠 ML Libraries:** TensorFlow, Keras, OpenCV, Pandas, Scikit-Learn, NumPy
- **☁️ Cloud:** AWS Cloud (Athena, S3, EC2, SageMaker, Lambda, ETL, IAM), Oracle Cloud
- **🗄️ Databases:** Redshift, MongoDB, MySQL, SQLite 📂
- **📊 BI Tools:** Tableau, QuickSight 📊
- **🛠️ Embedded Hardware:** Raspberry Pi, Nvidia Jetson Nano, Arduino 🔧
- **🤖 Automation:** Jenkins, Docker, GitHub Actions ⚙️
- 🌐 Others: Git, Agile, Confluence, JIRA, Scrum
- **🌍 Language:** English (Fluent), German (Elementary)
"""
)
# --- WORK HISTORY ---
st.write("📂 **Work History**")
st.write("---")
# --- JOB 1
st.write(
"🚧", "**Data Scientist | [SURU - Part of LIXIL](https://www.suru-water.com)**"
)
st.write("08/2021 - Present")
st.write(
"""
- 🔍 **Case-Validation:** Developed ML models to detect anomalies, reducing water damage risk #AnomalyDetection
- 💧 **Pressure Algo 2.0:** Improved pressure measurement models for leakage detection #SensorData
- 💡 **GOD (Gauge of Drops):** Deep learning for micro-leak detection with 96% accuracy, deployed on AWS #AWS
- 📸 **ICAS:** Enhanced image quality detection for user registration, reducing re-upload requests by 50%
- 🔄 **MLOps for ICAS:** Built automated monthly model re-training pipelines #MLOps
- 📈 Created **Tableau dashboards** to empower customer support teams and accelerate business intelligence
"""
)
# --- JOB 2
st.write("🚧", "**Data Science Intern | [Vialytics GmbH](https://www.vialytics.com)**")
st.write("07/2020 - 03/2021")
st.write(
"""
- 📷 Trained YOLOv4 for road damage detection on Oracle Cloud #ObjectDetection
- 🚧 Analyzed accelerometer data for road unevenness detection, in active use #SensorData
- ⚙️ Conducted anomaly analysis to improve road damage categorization accuracy
"""
)
# --- EDUCATION ---
st.write("🎓 **Education**")
st.write("---")
st.write("**Master of Science in Information Technology | University of Stuttgart**")
st.write("Oct. 2018 – May 2021")
st.write(
"""
- 🧠 Master Thesis: Used ML & DL to analyze EEG/ECG signals, comparing approaches for best results #SignalProcessing
"""
)
# --- Projects & Accomplishments ---
st.write("🏆 **Projects & Accomplishments**")
st.write("---")
PROJECTS = {
"GOD: System and method for detecting leakages in fluid-bearing structures": "Deep learning project with 96% accuracy; patent pending.",
"Water Consumption Prediction Service": "Built an end-to-end forecasting system, deployed with Docker and Flask. [**GitHub**](https://github.com/adnanmushtaq1996/Water_Consumption_Forecasting_Deployment)",
"LSTM and CNN Based IMU Sensor Fusion Approach for Human Pose Identification": "Published in Springer for using LSTM & CNN in pose detection. [**Springer**](https://link.springer.com/chapter/10.1007/978-3-030-69547-7_74)",
"YoloV8 Serverless Deployment": "Successfully deployed the YOLOv8 model on Amazon SageMaker Endpoints, integrating it with AWS Lambda and API Gateway to provide scalable object detection solutions. [**GitHub**](https://github.com/adnankarol/YOLOv8Deploy-SageMaker-Lambda-API-Gateway-Model-Deployment)",
"classifierAgent: A Machine Learning Classification Python Package": "Created a user-friendly Python package designed for efficient machine learning classification tasks, easily installable via pip. [**GitHub**](https://github.com/adnankarol/classifierAgent)",
}
for project, description in PROJECTS.items():
st.write(f"🔹 **{project}**: {description}")
# --- CERTIFICATIONS ---
st.write("📜 **Certifications**")
st.write("---")
st.write(
"🏅 **AWS Certified Cloud Practitioner** - Demonstrates AWS Cloud fundamentals [**Badge**](https://www.credly.com/badges/484de3ac-d0ec-410d-8e39-86d0acf9ba00/public_url)"
)
st.write(
"🎓 **AWS Certified Machine Learning Specialty** - Demonstrates AWS Cloud Machine Learning fundamentals [**Certificate**](https://udemy-certificate.s3.amazonaws.com/pdf/UC-c0e83341-3055-483a-bcb6-7e6f878f2e25.pdf)"
)