-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathastar.py
184 lines (143 loc) · 5.44 KB
/
astar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#To run: python astar.py < board-1-x.txt
'''
NODE REPRESENTATIONS
. not visited, walkable
# wall
A starting node
B goal node
o in the open set
c in the closed set
'''
class PriorityQueue: #store in a min-heap
def __init__(self):
self.nodes = []
def __cmp__(self, other):
return cmp(self.f, other.f) #order heap by f(n) value
def contains(self, other):
for node in self.nodes:
if node.position == other.position:
return True
return False
def is_empty(self):
return len(self.nodes) == 0
def push(self, node):
self.nodes.append(node)
self.nodes.sort(key=lambda x: x.f, reverse = True)
def pop(self):
self.nodes.sort(key=lambda x: x.f, reverse = True)
node = self.nodes.pop()
return node
class Node:
def __init__(self, position):
self.position = position
self.parent = None
self.g = float("Inf") #Infinity values for g and h so that we can improve them later
self.h = float("Inf")
self.f = self.g + self.h
self.weight = None
self.representation = '.' #Used for printing the board to console
def __str__(self):
return self.representation
def a_star(board, start_node, goal_node):
closed_set = []
open_set = PriorityQueue()
start_node.g = 0
start_node.h = manhattan_distance(start_node, goal_node)
start_node.f = manhattan_distance(start_node, goal_node) #f for initial node is completely heuristic
open_set.push(start_node)
print "We start out at", start_node.position
while not open_set.is_empty():
current = open_set.pop()
if current.position == goal_node.position:
print "Yay, we found the goal!"
print "The path to the goal was", path(current)
return path(current)
closed_set.append(current) #could have had this as a PriorityQueue, but didn't really see the point
current.representation = 'c'
for node in getNeighbours(current, board):
if node in closed_set:
continue
neighbor_g = current.g + manhattan_distance(current, node) #use manhattan_distance? else: TODO
if not open_set.contains(node): #discover new node, visit at some later point
open_set.push(node)
node.representation = 'o'
elif neighbor_g >= node.g: #this path is not an augmenting one
continue
#Record our amazing progress on finding a good node which is possibly in the path
node.parent = current
node.g = current.g
node.h = manhattan_distance(node, goal_node)
node.f = current.g + manhattan_distance(node, goal_node)
print_board(board)
return 0
def main():
board = read_board()
print_board(board)
a_star(board, start_node(board), goal_node(board))
#Get walkable neighbours for a node
def getNeighbours(node, board):
neighbours = []
current_x = node.position[0]
current_y = node.position[1]
possible_positions = [(current_x, current_y+1), (current_x, current_y-1), (current_x+1, current_y), (current_x-1, current_y)]
for position in possible_positions:
if (not position[0] == -1) and (not position[1] == -1): #avoid exiting through the beginning of the board
for line in board: #not optimal.. should be refactored sometime
for node in line:
if node.position == position:
if not is_wall(node.position, board):
neighbours.append(node)
return neighbours
#Calculate heuristic
def manhattan_distance(node, goal_node):
node_x = node.position[0]
node_y = node.position[1]
goal_node_x = goal_node.position[0]
goal_node_y = goal_node.position[1]
return abs(node_x - goal_node_x) + abs(node_y - goal_node_y)
#Get path back to start_node
def path(node):
path = [node.position] #Can alter this to return the entire objects, not just their positions
while node.parent != None:
path.append(node.parent.position)
node = node.parent
return path
#Board reading functions
def read_board():
from sys import stdin
board = []
i = 0
for line in stdin.readlines(): #read board from stdin
board_line = []
for j in range(len(line)):
new_node = Node((i, j))
new_node.representation = line[j]
board_line.append(new_node) #create node representation of board
board.append(board_line)
i += 1
return board
def print_board(board):
board_representation = []
for line in board:
line_array = []
for node in line:
line_array.append(str(node)) #same as node.representation
board_representation.append(line_array)
for line in board_representation:
print ''.join(line).strip()
def start_node(board):
for i in range(len(board)):
for j in range(len(board[i])):
if str(board[i][j]) == 'A':
return Node((i, j))
def goal_node(board):
for i in range(len(board)):
for j in range(len(board[i])):
if str(board[i][j]) == 'B':
return Node((i, j))
def is_goal_node(position_tuple, board):
return str(board[position_tuple[0]][position_tuple[1]]) == "B"
def is_wall(position_tuple, board):
return str(board[position_tuple[0]][position_tuple[1]]) == "#"
if __name__ == '__main__':
main()