-
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathread_data.py
93 lines (78 loc) · 3.25 KB
/
read_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Read data
# Importing the libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.patches import Circle
from skimage.io import imshow
import math
# Check if row has any NaN values
def has_nan(keypoints):
for i in range(len(keypoints)):
if math.isnan(keypoints[i]):
return True
return False
# Function which plots an image with it's corresponding keypoints
def visualize_points(img, points):
fig,ax = plt.subplots(1)
ax.set_aspect('equal')
imshow(img)
for i in range(0,len(points),2):
x_renorm = (points[i]+0.5)*96 # Denormalize x-coordinate
y_renorm = (points[i+1]+0.5)*96 # Denormalize y-coordinate
circ = Circle((x_renorm, y_renorm),1, color='r') # Plot the keypoints at the x and y coordinates
ax.add_patch(circ)
plt.show()
# Read the data as Dataframes
training = pd.read_csv('data/training.csv')
test = pd.read_csv('data/test.csv')
# Get training data
imgs_train = []
points_train = []
for i in range(len(training)):
points = training.iloc[i,:-1]
if has_nan(points) is False:
test_image = training.iloc[i,-1] # Get the image data
test_image = np.array(test_image.split(' ')).astype(int)
test_image = np.reshape(test_image, (96,96)) # Reshape into an array of size 96x96
test_image = test_image/255 # Normalize image
imgs_train.append(test_image)
keypoints = training.iloc[i,:-1].astype(int).values
keypoints = keypoints/96 - 0.5 # Normalize keypoint coordinates
points_train.append(keypoints)
imgs_train = np.array(imgs_train)
points_train = np.array(points_train)
# Get test data
imgs_test = []
for i in range(len(test)):
test_image = test.iloc[i,-1] # Get the image data
test_image = np.array(test_image.split(' ')).astype(int)
test_image = np.reshape(test_image, (96,96)) # Reshape into an array of size 96x96
test_image = test_image/255 # Normalize image
imgs_test.append(test_image)
imgs_test = np.array(imgs_test)
# Data Augmentation by mirroring the images
def augment(img, points):
f_img = img[:, ::-1] # Mirror the image
for i in range(0,len(points),2): # Mirror the key point coordinates
x_renorm = (points[i]+0.5)*96 # Denormalize x-coordinate
dx = x_renorm - 48 # Get distance to midpoint
x_renorm_flipped = x_renorm - 2*dx
points[i] = x_renorm_flipped/96 - 0.5 # Normalize x-coordinate
return f_img, points
aug_imgs_train = []
aug_points_train = []
for i, img in enumerate(imgs_train):
f_img, f_points = augment(img, points_train[i])
aug_imgs_train.append(f_img)
aug_points_train.append(f_points)
aug_imgs_train = np.array(aug_imgs_train)
aug_points_train = np.array(aug_points_train)
# Combine the original data and augmented data
imgs_total = np.concatenate((imgs_train, aug_imgs_train), axis=0)
points_total = np.concatenate((points_train, aug_points_train), axis=0)
def get_train_data():
imgs_total_reshaped = np.reshape(imgs_total, (imgs_total.shape[0],imgs_total.shape[1],imgs_total.shape[2], 1))
return imgs_total_reshaped,points_total
def get_test_data():
return imgs_test