-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun.py
68 lines (54 loc) · 2.93 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import multiprocessing
import tensorflow as tf
import datasets
import models
from datasets import Dataviewer
FLAGS = tf.app.flags.FLAGS
CPUS = multiprocessing.cpu_count()
tf.app.flags.DEFINE_string('dataset', 'Make3D', 'Dataset to use. Defaults to '
'Make3D. One of: [Make3D, Make3D2, Nyu, Merged]')
tf.app.flags.DEFINE_string('model', 'Pix2Pix', 'Model to use. Defaults to '
'Pix2Pix. One of: [Simple, MultiScale, Pix2Pix, '
'Generator, Inference]')
tf.app.flags.DEFINE_string('checkpoint_dir', None, 'Directory containing '
'a checkpoint to load, has to fit the model.')
tf.app.flags.DEFINE_integer('epochs', 0, 'Number of epochs to train for. '
'Defaults to 0 which is needed when only running '
'inference using a pretrained model.')
tf.app.flags.DEFINE_integer('workers', CPUS, 'Number of threads to use. '
'Defaults to the count of available cores.')
tf.app.flags.DEFINE_boolean('cleanup_on_exit', False,
'Remove temporary files on exit.')
tf.app.flags.DEFINE_integer('test_split', 10, 'Percentage of samples to use '
'for evaluation during training. Defaults to 10. '
'Only relevant if use_predefined_split is set to '
'False or when there is no such predefined split '
'available.')
tf.app.flags.DEFINE_boolean('use_custom_test_split', False,
'Whether to not use the dataset\'s predefined '
'train/test split even if one is available. '
'Defaults to False.')
def main(argv=None): # pylint: disable=unused-argument
assert hasattr(datasets, FLAGS.dataset), 'No such dataset available.'
assert hasattr(models, FLAGS.model), 'No such model available.'
assert FLAGS.epochs > 0 or FLAGS.checkpoint_dir is not None, \
'checkpoint_dir required when no training planned. Otherwise set ' \
'a number of epochs to train for.'
Dataset = getattr(datasets, FLAGS.dataset)
Model = getattr(models, FLAGS.model)
dataset = Dataset(cleanup_on_exit=FLAGS.cleanup_on_exit,
use_predefined_split=not FLAGS.use_custom_test_split,
test_split=FLAGS.test_split, workers=FLAGS.workers,
checkpoint_dir=FLAGS.checkpoint_dir)
model = Model(dataset, checkpoint_dir=FLAGS.checkpoint_dir)
if FLAGS.epochs > 0:
model.train(epochs=FLAGS.epochs)
results = model.evaluate()
if Dataviewer.AVAILABLE:
keys = ('inputs', 'outputs')
if dataset.has_targets:
keys = keys + ('targets',)
Dataviewer(results, name='Results', keys=keys,
cmaps={'outputs': 'gray', 'targets': 'gray'})
if __name__ == '__main__':
tf.app.run()