-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfaceRec.py
102 lines (83 loc) · 3.48 KB
/
faceRec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import face_recognition
import cv2
import numpy as np
# MUST have active webcam or script will error
# refers to default webcam
video_capture = cv2.VideoCapture(0)
# Load a sample picture and learn how to recognize it
# OBAMA
obama_image = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
# Load a second sample picture and learn how to recognize it
# BIDEN
biden_image = face_recognition.load_image_file("biden.jpg")
biden_face_encoding = face_recognition.face_encodings(biden_image)[0]
# Load a second sample picture and learn how to recognize it
# TAJ my dog
taj_image = face_recognition.load_image_file("taj.jpg")
taj_face_encoding = face_recognition.face_encodings(taj_image)[0]
# Create arrays of known face encodings and their names
known_face_encodings = [
obama_face_encoding,
biden_face_encoding,
taj_face_encoding
]
known_face_names = [
"Barack Obama",
"Joe Biden"
"taj"
]
# Initialize variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
# grab single frame of video
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# convert from grayscale to color
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# find all faces and encodings in current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# see if face is match for known faces
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index]
# Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
# display results
for(top, right, bottom, left), name in zip(face_locations, face_names):
# bring scale back up from 1/4 to 1, by multiplying by 4
top *= 4
right *= 4
bottom *= 4
left *= 4
# draw box around face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# draw label to display persons name
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# display the image
cv2.imshow('Video', frame)
# Hit 'q' to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()