-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcoco_utils.py
312 lines (263 loc) · 11.3 KB
/
coco_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import torch
import torchvision
from pycocotools.coco import COCO
from pycocotools import mask as coco_mask
#from datasets import CocoDetection
from tqdm import tqdm
def _coco_remove_images_without_annotations(dataset, cat_list=None):
print('Inside remove images with no annotations')
def _has_only_empty_bbox(anno):
return all(any(o <= 1 for o in obj["bbox"][2:]) for obj in anno)
def _count_visible_keypoints(anno):
return sum(sum(1 for v in ann["keypoints"][2::3] if v > 0) for ann in anno)
def _has_bbox_with_no_area(anno):
return any(obj["area"] <= 1 for obj in anno)
min_keypoints_per_image = 10
def _has_valid_annotation(anno):
# if it's empty, there is no annotation
if len(anno) == 0:
return False
# if all boxes have close to zero area, there is no annotation
if _has_only_empty_bbox(anno):
return False
if _has_bbox_with_no_area(anno):
print('Object with no area found')
return False
# keypoints task have a slight different critera for considering
# if an annotation is valid
if "keypoints" not in anno[0]:
return True
# for keypoint detection tasks, only consider valid images those
# containing at least min_keypoints_per_image
if _count_visible_keypoints(anno) >= min_keypoints_per_image:
return True
print('Reached bottom of _has_valid_annotation()')
return False
assert isinstance(dataset, torchvision.datasets.CocoDetection)
ids = []
for ds_idx, img_id in enumerate(dataset.ids):
ann_ids = dataset.coco.getAnnIds(imgIds=img_id, iscrowd=None)
anno = dataset.coco.loadAnns(ann_ids)
if cat_list:
anno = [obj for obj in anno if obj["category_id"] in cat_list]
if _has_valid_annotation(anno):
ids.append(ds_idx)
dataset = torch.utils.data.Subset(dataset, ids)
return dataset
def convert_coco_poly_to_mask(segmentations, height, width):
masks = []
for polygons in segmentations:
rles = coco_mask.frPyObjects(polygons, height, width)
mask = coco_mask.decode(rles)
if len(mask.shape) < 3:
mask = mask[..., None]
mask = torch.as_tensor(mask, dtype=torch.uint8)
mask = mask.any(dim=2)
masks.append(mask)
if masks:
masks = torch.stack(masks, dim=0)
else:
masks = torch.zeros((0, height, width), dtype=torch.uint8)
return masks
class ConvertCocoPolysToMask:
def __call__(self, image, target):
w, h = image.size
image_id = target["image_id"]
image_id = torch.tensor([image_id])
anno = target["annotations"]
anno = [obj for obj in anno if obj["iscrowd"] == 0]
boxes = [obj["bbox"] for obj in anno]
# guard against no boxes via resizing
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
boxes[:, 2:] += boxes[:, :2] # This way we transform [x, y, width, height] to [x_min, y_min, x_max, y_max]
boxes[:, 0::2].clamp_(min=0, max=w)
boxes[:, 1::2].clamp_(min=0, max=h)
classes = [obj["category_id"] for obj in anno]
classes = torch.tensor(classes, dtype=torch.int64)
# --------------------------------
# Deactivated as we don't use them
# and masks set to None
# -------------------------------
# segmentations = [obj["segmentation"] if obj["segmentation"] != [] else None for obj in anno]
# masks = convert_coco_poly_to_mask(segmentations, h, w)
masks = None
# ----------------------
keypoints = None
if anno and "keypoints" in anno[0]:
keypoints = [obj["keypoints"] for obj in anno]
keypoints = torch.as_tensor(keypoints, dtype=torch.float32)
num_keypoints = keypoints.shape[0]
if num_keypoints:
keypoints = keypoints.view(num_keypoints, -1, 3)
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
boxes = boxes[keep]
classes = classes[keep]
if masks is not None:
masks = masks[keep]
if keypoints is not None:
keypoints = keypoints[keep]
target = {}
target["boxes"] = boxes
target["labels"] = classes
if masks is not None:
target["masks"] = masks
target["image_id"] = image_id
if keypoints is not None:
target["keypoints"] = keypoints
# for conversion to coco api
area = torch.tensor([obj["area"] for obj in anno])
iscrowd = torch.tensor([obj["iscrowd"] for obj in anno])
target["area"] = area
target["iscrowd"] = iscrowd
return image, target
def convert_to_coco_api(ds):
coco_ds = COCO()
# TODO: Watch carefully this
# annotation IDs need to start at 1, not 0, see torchvision issue #1530
ann_id = 1
dataset = {"images": [], "categories": [], "annotations": []}
categories = set()
for img_idx in tqdm(range(len(ds)), desc='Converting dataset to coco api'):
# find better way to get target
# targets = ds.get_annotations(img_idx)
img, targets = ds[img_idx]
image_id = targets["image_id"].item()
img_dict = {}
img_dict["id"] = image_id
img_dict["height"] = img.shape[-2]
img_dict["width"] = img.shape[-1]
dataset["images"].append(img_dict)
bboxes = targets["boxes"].clone()
bboxes[:, 2:] -= bboxes[:, :2]
bboxes = bboxes.tolist()
labels = targets["labels"].tolist()
areas = targets["area"].tolist()
iscrowd = targets["iscrowd"].tolist()
if "masks" in targets:
masks = targets["masks"]
# make masks Fortran contiguous for coco_mask
masks = masks.permute(0, 2, 1).contiguous().permute(0, 2, 1)
if "keypoints" in targets:
keypoints = targets["keypoints"]
keypoints = keypoints.reshape(keypoints.shape[0], -1).tolist()
num_objs = len(bboxes)
for i in range(num_objs):
ann = {}
ann["image_id"] = image_id
ann["bbox"] = bboxes[i]
ann["category_id"] = labels[i]
categories.add(labels[i])
ann["area"] = areas[i]
ann["iscrowd"] = iscrowd[i]
ann["id"] = ann_id
if "masks" in targets:
ann["segmentation"] = coco_mask.encode(masks[i].numpy())
if "keypoints" in targets:
ann["keypoints"] = keypoints[i]
ann["num_keypoints"] = sum(k != 0 for k in keypoints[i][2::3])
dataset["annotations"].append(ann)
ann_id += 1
dataset["categories"] = [{"id": i} for i in sorted(categories)]
coco_ds.dataset = dataset
coco_ds.createIndex()
return coco_ds
def get_coco_api_from_dataset(dataset):
for _ in range(10):
if isinstance(dataset, torchvision.datasets.CocoDetection):
break
if isinstance(dataset, CocoDetection): # Custom CocoDetection class
return dataset.coco
if isinstance(dataset, torch.utils.data.Subset):
dataset = dataset.dataset
if isinstance(dataset, torchvision.datasets.CocoDetection):
return dataset.coco
return convert_to_coco_api(dataset)
class CocoDetection(torchvision.datasets.CocoDetection):
def __init__(self, img_folder, ann_file, transforms, known_classes=None):
super().__init__(img_folder, ann_file)
self._transforms = transforms
self.known_classes = known_classes
self.original_ids_to_new_ids = None
if known_classes:
print('-'*50)
print('Transforming dataset to keep only the categories specified in the config file:')
self.transform_dataset_class_to_keep_only_known_categories()
print(self.coco.cats)
print('-' * 50)
def __getitem__(self, idx):
img, target = super().__getitem__(idx)
image_id = self.ids[idx]
target = dict(image_id=image_id, annotations=target)
# # If known classes is present, we must do removal of annotations at runtime
# if self.known_cls_ids:
# target['annotations'] = [obj for obj in target['annotations'] if obj["category_id"] in self.known_cls_ids]
if self._transforms is not None:
img, target = self._transforms(img, target)
return img, target
def transform_dataset_class_to_keep_only_known_categories(self):
categories_orig_id = []
for cat in self.known_classes:
categories_orig_id.append({
'id': cat['orig_id'], 'name': cat['name']
})
# Add the dict to translate original IDs to new IDs
self.original_ids_to_new_ids = {}
for cls in self.known_classes:
self.original_ids_to_new_ids[cls['orig_id']] = cls['id']
# List with only the original id of the categories
known_classes_original_ids = [x['id'] for x in categories_orig_id]
# Modify annotations
new_ann = []
for ann in self.coco.dataset['annotations']:
if ann['category_id'] in known_classes_original_ids:
ann['category_id'] = self.original_ids_to_new_ids[ann['category_id']]
new_ann.append(ann)
self.coco.dataset['annotations'] = new_ann
# Modify images dict
new_img_ids = set()
for ann in self.coco.dataset['annotations']:
new_img_ids.add(ann['image_id'])
new_images = []
for img_info in self.coco.dataset['images']:
if img_info['id'] in new_img_ids:
new_images.append(img_info)
self.coco.dataset['images'] = new_images
# Modify categories
self.coco.dataset['categories'] = self.known_classes[1:]
# Create Index with new annotations, images and categories and modify the ids
self.coco.createIndex()
self.ids = list(sorted(self.coco.imgs.keys()))
def keep_only_known_classes(coco_obj, known_classes):
print('Changing the number of classes of coco and recreating index')
from copy import deepcopy
copied_coco = deepcopy(coco_obj)
categories_orig_id = []
for cat in known_classes:
categories_orig_id.append({
'id': cat['orig_id'], 'name': cat['name']
})
# Dict to translate original IDs to new IDs
original_ids_to_new_ids = {}
for cls in known_classes:
original_ids_to_new_ids[cls['orig_id']] = cls['id']
# List with only the original id of the categories
known_classes_original_ids = [x['id'] for x in categories_orig_id]
# Modify annotations
new_ann = []
for ann in copied_coco.dataset['annotations']:
if ann['category_id'] in known_classes_original_ids:
ann['category_id'] = original_ids_to_new_ids[ann['category_id']]
new_ann.append(ann)
copied_coco.dataset['annotations'] = new_ann
# Modify images dict
new_img_ids = set()
for ann in copied_coco.dataset['annotations']:
new_img_ids.add(ann['image_id'])
new_images = []
for img_info in copied_coco.dataset['images']:
if img_info['id'] in new_img_ids:
new_images.append(img_info)
copied_coco.dataset['images'] = new_images
# Modify categories
copied_coco.dataset['categories'] = known_classes[1:]
return copied_coco