-
Notifications
You must be signed in to change notification settings - Fork 194
/
Copy pathAPI.py
110 lines (94 loc) · 4.66 KB
/
API.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Plat Interface for Convenience and Interoperability
# Adopted from Plat by Tom White : https://github.com/dribnet/plat
import theano
import theano.tensor as T
import lasagne
import imp
import GANcheckpoints
# Generic class for using IAN style models with the NPE.
class IAN:
def __init__(self, config_path,dnn):
"""
Initializate class give either a filename or a model
Usually this method will load a model from disk and store internally,
but model can also be provided directly instead (useful when training)
"""
config_module = imp.load_source('config',config_path)
self.cfg = config_module.cfg
self.weights_fname = str(config_path)[:-3]+'.npz'
self.model = config_module.get_model(dnn=dnn)
# Load weights
print('Loading weights')
params = list(set(lasagne.layers.get_all_params(self.model['l_out'],trainable=True)+\
lasagne.layers.get_all_params(self.model['l_discrim'],trainable=True)+\
[x for x in lasagne.layers.get_all_params(self.model['l_out'])+\
lasagne.layers.get_all_params(self.model['l_discrim'])\
if x.name[-4:]=='mean' or x.name[-7:]=='inv_std']))
GANcheckpoints.load_weights(self.weights_fname,params)
# Shuffle weights if using IAF with MADE
if 'l_IAF_mu' in self.model:
print ('Shuffling MADE masks')
self.model['l_IAF_mu'].reset("Once")
self.model['l_IAF_ls'].reset("Once")
print('Compiling Theano Functions')
# Input Tensor
self.X = T.TensorType('float32', [False]*4)('X')
# Latent Vector
self.Z = T.TensorType('float32', [False]*2)('Z')
# X_hat(Z)
self.X_hat = lasagne.layers.get_output(self.model['l_out'],{self.model['l_Z']:self.Z},deterministic=True)
self.X_hat_fn = theano.function([self.Z],self.X_hat)
# Z_hat(X)
self.Z_hat=lasagne.layers.get_output(self.model['l_Z'],{self.model['l_in']:self.X},deterministic=True)
self.Z_hat_fn = theano.function([self.X],self.Z_hat)
# Imgrad Functions
r1,r2 = T.scalar('r1',dtype='int32'),T.scalar('r2',dtype='int32')
c1,c2 = T.scalar('c',dtype='int32'),T.scalar('c2',dtype='int32')
RGB = T.tensor4('RGB',dtype='float32')
# Image Gradient Function, evaluates the change in latents which would lighten the image in the local area
self.calculate_lighten_gradient = theano.function([c1,r1,c2,r2,self.Z],T.grad(T.mean(self.X_hat[0,:,r1:r2,c1:c2]),self.Z))
# Image Color Gradient Function, evaluates the change in latents which would push the image towards the local desired RGB value
# Consider changing this to only take in a smaller RGB array, rather than a full-sized, indexed RGB array.
# Also consider using the L1 loss instead of L2
self.calculate_RGB_gradient = theano.function([c1,r1,c2,r2,RGB,self.Z],T.grad(T.mean((T.sqr(-self.X_hat[0,:,r1:r2,c1:c2]+RGB[0,:,r1:r2,c1:c2]))),self.Z)) # may need a T.mean
def imgrad(self,c1,r1,c2,r2,z):
"""
Calculate the change in latents which would lighten the local image patch.
"""
return self.calculate_lighten_gradient(c1,r1,c2,r2,z)
def imgradRGB(self,c1,r1,c2,r2,RGB,z):
"""
Calculate the change in latents which would move the local image patch towards the RGB value of RGB.
"""
return self.calculate_RGB_gradient(c1,r1,c2,r2,RGB,z)
def encode_images(self, images):
"""
Encode images x => z
images is an n x 3 x s x s numpy array where:
n = number of images
3 = R G B channels
s = size of image (eg: 64, 128, etc)
pixels values for each channel are encoded [-1,1]
returns an n x z numpy array where:
n = len(images)
z = dimension of latent space
"""
return self.Z_hat_fn(images)
def get_zdim(self):
"""
Returns the integer dimension of the latent z space
"""
return self.cfg['num_latents']
def sample_at(self, z):
"""
Decode images z => x
z is an n x z numpy array where:
n = len(images)
z = dimension of latent space
return images as an n x 3 x s x s numpy array where:
n = number of images
3 = R G B channels
s = size of image (eg: 64, 128, etc)
pixels values for each channel are encoded [-1,1]
"""
return self.X_hat_fn(z)