-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaudio_pert.py
177 lines (138 loc) · 6.08 KB
/
audio_pert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import numpy as np
import pretty_midi
import librosa
import soundfile as sf
def midi_to_audio(midi_file):
"""Convert MIDI to audio using pretty_midi."""
pm = pretty_midi.PrettyMIDI(midi_file)
# Set instrument to Acoustic Grand Piano (Program Number 0)
for instrument in pm.instruments:
instrument.program = 0
audio = pm.synthesize(fs=44100)
return audio, 44100
def add_noise_in_frequency_domain(signal, noise_level):
"""
Add noise to the signal in the frequency domain to perturb the audio signal.
At 100% noise level, the signal becomes entirely random.
"""
# Perform STFT
n_fft = 2048
hop_length = n_fft // 4
D = librosa.stft(signal, n_fft=n_fft, hop_length=hop_length)
# Get magnitude and phase
magnitude, phase = np.abs(D), np.angle(D)
# Generate random noise for magnitude and phase
random_magnitude = np.random.rand(*magnitude.shape) * np.max(magnitude)
random_phase = np.random.uniform(-np.pi, np.pi, size=phase.shape)
# Interpolate between original and random components based on noise level
noisy_magnitude = (1 - noise_level) * magnitude + noise_level * random_magnitude
noisy_phase = (1 - noise_level) * phase + noise_level * random_phase
# Reconstruct the noisy signal
D_noisy = noisy_magnitude * np.exp(1j * noisy_phase)
noisy_signal = librosa.istft(D_noisy, hop_length=hop_length, length=len(signal))
# Normalize to prevent clipping
max_val = np.max(np.abs(noisy_signal))
if max_val > 0:
noisy_signal = noisy_signal / max_val
return noisy_signal
def add_phase_jitter(signal, noise_level):
"""
Add phase jitter to the signal in the frequency domain.
noise_level ranges from 0.0 (no noise) to 1.0 (maximum noise).
"""
# Perform STFT
n_fft = 2048
hop_length = n_fft // 4
D = librosa.stft(signal, n_fft=n_fft, hop_length=hop_length)
# Get magnitude and phase
magnitude, phase = np.abs(D), np.angle(D)
# Generate random phase noise
max_phase_noise = np.pi * 2 * noise_level # Max phase noise scales with noise_level
phase_noise = np.random.uniform(-max_phase_noise, max_phase_noise, size=phase.shape)
# Add phase noise
noisy_phase = phase + phase_noise
# Reconstruct the signal
D_noisy = magnitude * np.exp(1j * noisy_phase)
noisy_signal = librosa.istft(D_noisy, hop_length=hop_length, length=len(signal))
# Normalize the signal
max_val = np.max(np.abs(noisy_signal))
if max_val > 0:
noisy_signal = noisy_signal / max_val
return noisy_signal
def add_time_domain_jitter(signal, noise_level, sr):
"""
Introduce random time shifts (jitter) to small frames of the signal.
"""
frame_length_ms = 10 # Frame length in milliseconds
frame_length_samples = int(sr * frame_length_ms / 1000)
max_shift_ms = 10 * noise_level # Maximum shift in milliseconds
max_shift_samples = int(sr * max_shift_ms / 1000)
num_frames = len(signal) // frame_length_samples
output_signal = np.zeros_like(signal)
for i in range(num_frames):
start = i * frame_length_samples
end = start + frame_length_samples
frame = signal[start:end]
# Random shift within the maximum shift range
shift = np.random.randint(-max_shift_samples, max_shift_samples + 1)
shifted_start = start + shift
shifted_end = shifted_start + len(frame)
# Ensure indices are within bounds
if shifted_start < 0:
frame = frame[-shifted_start:]
shifted_start = 0
if shifted_end > len(signal):
frame = frame[:len(signal) - shifted_start]
shifted_end = len(signal)
# Overlap-add the shifted frame
output_signal[shifted_start:shifted_end] += frame
# Normalize the signal
max_val = np.max(np.abs(output_signal))
if max_val > 0:
output_signal = output_signal / max_val
return output_signal
def process_midi_files(data_dir, output_dir, noise_levels):
"""Process all MIDI files in the dataset."""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
midi_files = []
for root, _, files in os.walk(data_dir):
for file in files:
if file.lower().endswith(('.mid', '.midi')):
midi_files.append(os.path.join(root, file))
print(f"Found {len(midi_files)} MIDI files.")
for midi_file in midi_files:
try:
print(f"Processing: {midi_file}")
base_name = os.path.splitext(os.path.basename(midi_file))[0]
# Generate audio from MIDI
y, sr = midi_to_audio(midi_file)
# Normalize the audio
y = y / np.max(np.abs(y))
# Create noisy versions
for noise_percent in noise_levels:
noise_level = noise_percent / 100.0 # Convert to 0.0 - 1.0
if noise_level == 0:
# No noise added; use original signal
y_noisy = y
else:
# Add phase jitter
# y_noisy = add_phase_jitter(y, noise_level)
y_noisy = add_time_domain_jitter(y, noise_level, sr)
# Normalize to prevent clipping
y_noisy = y_noisy / np.max(np.abs(y_noisy))
# Save file
output_file = f"{base_name}_noise_{int(noise_percent)}percent.wav"
output_path = os.path.join(output_dir, output_file)
sf.write(output_path, y_noisy, sr)
print(f"Saved: {output_path}")
except Exception as e:
print(f"Error processing {midi_file}: {e}")
# Main execution
if __name__ == "__main__":
np.random.seed(42)
data_directory = 'EMOPIA_1.0/midis'
output_directory = 'EMOPIA_1.0_noisy_time'
noise_levels = [0, 25, 50, 75, 100] # Adjust as needed
process_midi_files(data_directory, output_directory, noise_levels)