-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmusical_pert.py
94 lines (76 loc) · 3.57 KB
/
musical_pert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import numpy as np
import copy # Import the copy module
import pretty_midi
import soundfile as sf
def midi_to_audio(pm, fs=44100):
"""Convert PrettyMIDI object to audio using the built-in synthesizer."""
audio = pm.synthesize(fs=fs)
return audio, fs
def randomize_midi_notes(pm, noise_level):
"""
Randomly alter the pitches of notes in the MIDI data based on noise_level.
noise_level ranges from 0.0 (no changes) to 1.0 (all notes randomized).
"""
for instrument in pm.instruments:
num_notes = len(instrument.notes)
num_notes_to_randomize = int(noise_level * num_notes)
# Randomly select notes to randomize
indices = np.random.choice(num_notes, num_notes_to_randomize, replace=False)
for idx in indices:
original_note = instrument.notes[idx]
# Randomly select a new pitch within MIDI note range (21 to 108 for piano)
new_pitch = np.random.randint(21, 109)
instrument.notes[idx].pitch = new_pitch
return pm
def process_midi_files(data_dir, output_dir, noise_levels):
"""Process all MIDI files in the dataset by randomizing note pitches."""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
midi_files = []
for root, _, files in os.walk(data_dir):
for file in files:
if file.lower().endswith(('.mid', '.midi')):
midi_files.append(os.path.join(root, file))
print(f"Found {len(midi_files)} MIDI files.")
for midi_file in midi_files:
try:
print(f"Processing: {midi_file}")
base_name = os.path.splitext(os.path.basename(midi_file))[0]
# Load MIDI file
pm = pretty_midi.PrettyMIDI(midi_file)
# Set instrument to Acoustic Grand Piano (Program Number 0)
for instrument in pm.instruments:
instrument.program = 0
instrument.is_drum = False # Ensure it's not a drum instrument
# Create versions with different noise levels
for noise_percent in noise_levels:
noise_level = noise_percent / 100.0 # Convert to 0.0 - 1.0
if noise_level == 0:
# Use original MIDI data
pm_noisy = pm
else:
# Create a deep copy to avoid modifying the original
pm_noisy = copy.deepcopy(pm)
# Randomize note pitches
pm_noisy = randomize_midi_notes(pm_noisy, noise_level)
# Convert MIDI to audio
y_noisy, sr = midi_to_audio(pm_noisy)
# Normalize the audio
max_val = np.max(np.abs(y_noisy))
if max_val > 0:
y_noisy = y_noisy / max_val
# Save the audio file
output_file = f"{base_name}_noise_{int(noise_percent)}percent.wav"
output_path = os.path.join(output_dir, output_file)
sf.write(output_path, y_noisy, sr)
print(f"Saved: {output_path}")
except Exception as e:
print(f"Error processing {midi_file}: {e}")
# Main execution
if __name__ == "__main__":
np.random.seed(42)
data_directory = 'EMOPIA_1.0/midis'
output_directory = 'EMOPIA_1.0_noisy_midi_randomization'
noise_levels = [0, 25, 50, 75, 100] # Adjust as needed
process_midi_files(data_directory, output_directory, noise_levels)