-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmusical_pert_comb.py
143 lines (119 loc) · 6.05 KB
/
musical_pert_comb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import numpy as np
import copy # Import the copy module
import pretty_midi
import soundfile as sf
def midi_to_audio(pm, fs=44100):
"""Convert PrettyMIDI object to audio using the built-in synthesizer."""
audio = pm.synthesize(fs=fs)
return audio, fs
def randomize_midi(pm, noise_level):
"""
Randomize pitches, start times, and durations of notes in the MIDI data based on noise_level.
noise_level ranges from 0.0 (no changes) to 1.0 (all notes randomized).
"""
for instrument in pm.instruments:
num_notes = len(instrument.notes)
if num_notes == 0:
continue # Skip if there are no notes
# Calculate the number of notes to randomize
num_notes_to_randomize = int(noise_level * num_notes)
# Randomly select notes to randomize for each attribute
indices_pitch = np.random.choice(num_notes, num_notes_to_randomize, replace=False)
indices_timing = np.random.choice(num_notes, num_notes_to_randomize, replace=False)
indices_duration = np.random.choice(num_notes, num_notes_to_randomize, replace=False)
# Randomize pitches
for idx in indices_pitch:
original_note = instrument.notes[idx]
# Randomly select a new pitch within MIDI note range (21 to 108 for piano)
new_pitch = np.random.randint(21, 109)
instrument.notes[idx].pitch = new_pitch
# Randomize start times
max_shift = 0.5 # Maximum shift in seconds (adjust as needed)
for idx in indices_timing:
original_note = instrument.notes[idx]
shift = np.random.uniform(-max_shift, max_shift)
new_start = original_note.start + shift
# Ensure the new start time is non-negative
new_start = max(0, new_start)
# Update end time to maintain duration
duration = original_note.end - original_note.start
new_end = new_start + duration
instrument.notes[idx].start = new_start
instrument.notes[idx].end = new_end
# Randomize durations
max_change = 0.5 # Maximum change in seconds (adjust as needed)
for idx in indices_duration:
original_note = instrument.notes[idx]
change = np.random.uniform(-max_change, max_change)
new_duration = (original_note.end - original_note.start) + change
# Ensure the new duration is positive
new_duration = max(0.1, new_duration)
instrument.notes[idx].end = original_note.start + new_duration
return pm
def process_midi_files(data_dir, output_dir, noise_levels, clip_duration):
"""Process all MIDI files in the dataset by randomizing note attributes and clipping audio."""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
midi_files = []
for root, _, files in os.walk(data_dir):
for file in files:
if file.lower().endswith(('.mid', '.midi')):
midi_files.append(os.path.join(root, file))
print(f"Found {len(midi_files)} MIDI files.")
for midi_file in midi_files:
try:
print(f"Processing: {midi_file}")
base_name = os.path.splitext(os.path.basename(midi_file))[0]
# Load MIDI file
pm_original = pretty_midi.PrettyMIDI(midi_file)
# Set instrument to Acoustic Grand Piano (Program Number 0)
for instrument in pm_original.instruments:
instrument.program = 0
instrument.is_drum = False # Ensure it's not a drum instrument
# Create versions with different noise levels
for noise_percent in noise_levels:
noise_level = noise_percent / 100.0 # Convert to 0.0 - 1.0
if noise_level == 0:
# Use original MIDI data
pm_noisy = pm_original
else:
# Create a deep copy to avoid modifying the original
pm_noisy = copy.deepcopy(pm_original)
# Randomize note attributes
pm_noisy = randomize_midi(pm_noisy, noise_level)
# Convert MIDI to audio
y_noisy, sr = midi_to_audio(pm_noisy)
# Normalize the audio
max_val = np.max(np.abs(y_noisy))
if max_val > 0:
y_noisy = y_noisy / max_val
# Clip the audio to the specified duration
total_samples = len(y_noisy)
clip_samples = int(clip_duration * sr)
if clip_samples < total_samples:
# Calculate start and end indices for clipping
start_idx = (total_samples - clip_samples) // 2
end_idx = start_idx + clip_samples
y_noisy = y_noisy[start_idx:end_idx]
else:
# If the audio is shorter than the clip duration, pad it with zeros
padding = clip_samples - total_samples
pad_left = padding // 2
pad_right = padding - pad_left
y_noisy = np.pad(y_noisy, (pad_left, pad_right), mode='constant')
# Save the audio file
output_file = f"{base_name}_noise_{int(noise_percent)}percent.wav"
output_path = os.path.join(output_dir, output_file)
sf.write(output_path, y_noisy, sr)
print(f"Saved: {output_path}")
except Exception as e:
print(f"Error processing {midi_file}: {e}")
# Main execution
if __name__ == "__main__":
np.random.seed(42)
data_directory = 'InputData'
output_directory = '5s_EMOPIA_1.0_noisy_midi_randomization_comb_experimental_stimuli'
noise_levels = [0, 25, 50, 75, 100] # Adjust as needed
clip_duration = 5.0 # Desired duration in seconds
process_midi_files(data_directory, output_directory, noise_levels, clip_duration)