-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch8_apply functions.R
155 lines (100 loc) · 3.2 KB
/
ch8_apply functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# ch8: apply functions()
# create a matrix to store the newspaper readership of different papers across different cities
# total cities=20 (rows)
city=paste("C",seq(1,20),sep=""); city
# total papers=5 (cols)
paper=c('TOI','DNA','Express','HT','Hindu')
# create the data
ndata=sample(seq(7,90),length(city)*length(paper),replace=T)
length(ndata)
# create the matrix
mxpaper=matrix(ndata,ncol=length(paper),
dimnames=list(city,paper))
mxpaper
# 1) apply()
# find the total readership of newspapers for each city
r1 = apply(mxpaper,1,sum)
# total readership for city = 'C4'
r1[4]
# total readership for cities C8,C11,C14
apply(mxpaper[c('C8','C11','C14'),],1,sum )
# find average readership of papers for all cities
apply(mxpaper,1,mean)
# UDF with apply()
# based on a recent survey, it was found that the readership of all papers in all cities decreased by 5%
# find the current readership
# create a function 'decrease'
decrease=function(x) return(round(x-0.05*x,1))
mxpaper
apply(mxpaper,2,decrease)
# find total readership of individual newspapers
apply(mxpaper,2,sum)
# find the average readership of papers 'HT'and 'TOI'
apply(mxpaper[,c('HT','TOI')],2,mean)
# which paper has the highest average readership ?
r2 = apply(mxpaper,2,mean)
names(which(r2==max(r2)))
####
# 2) lapply()
# input: vector/list, output: list
# create a named list
lst_paper=list('TOI' = mxpaper[,1],
'DNA' = mxpaper[,2],
'Express' = mxpaper[,3],
'HT' = mxpaper[,4],
'Hindu' = mxpaper[,5] )
lst_paper
lapply(lst_paper,sum)
# average readership of 'Express'
lapply(lst_paper[3],mean)
# user-defined function in lapply()
lapply(lst_paper,decrease)
wordvec=c('file','programme','basket','classroom')
lapply(wordvec,nchar)
###
# 3) sapply() - returns a simple output
sapply(lst_paper,sum)
sapply(wordvec,nchar)
# 4) tapply() - equivalent to GROUP BY in SQL
mxpaper
# create tiers for each city and append to the matrix
length(mxpaper)
tier = rep(c(1,2,3),c(7,5,8))
mxpaper=cbind(mxpaper,tier=tier)
mxpaper
# find total of readership of TOI, for every Tier
# tapply(<col to aggregate>, <col to group by>,<fun>
tapply(mxpaper[,1],mxpaper[,6],sum)
# average readership for 'DNA', group by Tier
tapply(mxpaper[,'DNA'],mxpaper[,'tier'],mean)
# 5) rapply() - combine multiple operations
# sum of readership for TOI
sum(lst_paper$TOI)
# sum of readership for DNA
sum(lst_paper$DNA)
# sum of readership for Express
sum(lst_paper$Express)
# combine all in one function
rapply(lst_paper[1:3],sum)
# output in a list form
rapply(lst_paper[1:3],sum,how="list")
# 6) vapply()
mylist = list(seq(1,10), seq(71,80))
mylist
summary(unlist(mylist[1]))
summary(unlist(mylist[2]))
vapply(mylist,summary,
FUN.VALUE = c(numeric(1), numeric(1),
numeric(1), numeric(1),
numeric(1), numeric(1)) )
# 7) mapply()
v1=c(1:5); v1
v2=c(1:5); v2
v3=c(1:5); v3
# column-wise addition of all elements
mapply(sum,v1,v2,v3)
# end of apply() functions .........
dataframes
stats
eda+visualisation
ml