-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpu_types.cuh
511 lines (413 loc) · 15.7 KB
/
gpu_types.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
#ifndef GPU_TYPES_H
#define GPU_TYPES_H
#include <assert.h>
#include <vector>
namespace gpu {
// prototype data sub-structures and math functions
template <class T> class Matrix2D;
template <class T> class Matrix1D;
template <class T> class Vector1D;
template <class T> class device_ptr;
/* A 3D matrix, which is essentially a list of 2D matrixes.
* Data is stored contiguously in device memory, and indexing returns a
* 2D matrix whose data is a section of that memory.
*/
template <class T>
class Matrix3D {
public:
/* Create a 3D matrix of the specified size.
* Data will be new allocated in device memory and deleted upon deconstruction.
* \param[in] num_layers Number of 2D matrix layers
* \param[in] column_h Height of a child 2D matrix's column
* \param[in] row_w Width of a child 2D matrix's row
*/
Matrix3D(size_t num_layers, size_t column_h, size_t row_w) {
// set dimensions
num_layers_ = num_layers;
column_h_ = column_h;
row_w_ = row_w;
size_bytes = sizeof(T) * num_layers_ * column_h_ * row_w_;
// data is always new allocated for 3D
cudaError_t rval = cudaMalloc(&data_, size_bytes);
assert(rval == cudaSuccess);
};
/* Data is deleted upon deconstruction, and any child matrices
* will index to invalid data. */
~Matrix3D() {
// both always new allocated
cudaFree(data_);
};
/* Return a 2D matrix which references a piece of the contiguous memory.
* If a list of sub-matrices hasn't been created, it is created.
*/
Matrix2D<T>& operator [](size_t i) {
assert(i < num_layers_);
if (list_.size() == 0) process();
return list_[i];
};
/* Write the contents of the buffer into device memory.
* \param[in] buf Buffer to copy from.
*/
void write(T* buf) {
assert(buf != NULL);
cudaError_t rval = cudaMemcpy(data_, buf, size_bytes, cudaMemcpyHostToDevice);
assert(rval == cudaSuccess);
};
/* read data from the device into the provided buffer
* \param[in] buf Buffer to write memory into. */
void read(T* buf) const {
assert(buf != NULL);
cudaError_t rval = cudaMemcpy(buf, data_, size_bytes, cudaMemcpyDeviceToHost);
assert(rval == cudaSuccess);
};
/* \return Number of 2D sub-matrices */
size_t num() const {return num_layers_; };
/* \return Height of column */
size_t height() const {return column_h_; };
/* \return Width of row */
size_t width() const {return row_w_; };
/* \return a pointer to the data buffer. */
T* get_data() {return data_; };
private:
// dimensions
size_t num_layers_;
size_t column_h_;
size_t row_w_;
// size of the array in bytes
size_t size_bytes;
// pointer to memory chunk containing data
T* data_;
// an array to hold sub-matrices
std::vector<Matrix2D<T>> list_;
// create sub-data array
void process() {
if (list_.size() != 0) return;
for (int i=0; i < num_layers_; i++) {
// each matrix should reference piece of memory
list_.push_back(Matrix2D<T>(column_h_, row_w_, data_+(i*column_h_*row_w_)));
}
};
};
/* A 2D matrix, which is essentially a list of 1D matrixes.
* Data is stored contiguously in memory, and indexing returns a
* 1D matrix whose data is a section of that memory.
*/
template <class T>
class Matrix2D {
public:
/* Create a 2D matrix of the specified size.
* If data_loc is not NULL, then the data will be set to
* that location and will not be deleted upon deconstuction.
* \param[in] column_h Height of a child 2D matrix's column
* \param[in] row_w Width of a child 2D matrix's row
* \param[in] data_loc Pointer to the data to reference. Default NULL means new allocation.
*/
Matrix2D(size_t column_h, size_t row_w, T* data_loc=NULL) {
// set dimensions
column_h_ = column_h;
row_w_ = row_w;
size_bytes = sizeof(T) * column_h_ * row_w_;
// Allocate or reference data. Record if new allocated for later deletion.
if (data_loc == NULL) {
internal_ = false;
cudaError_t rval = cudaMalloc(&data_, size_bytes);
assert(rval == cudaSuccess);
}
else {
internal_ = true;
data_ = data_loc;
}
};
/* Deconstuction only deletes data if it was created in the constructor.
* If that happens, then child 1D matrixes will index to invalid memory.*/
~Matrix2D() {
// only delete if originally new allocated
if (!internal_) cudaFree(data_);
};
/* Return a 1D matrix which references a piece of the contiguous memory.
* If a sub-matrix vector has not been created, it is created.
*/
Matrix1D<T>& operator [](size_t i) {
assert(i < column_h_);
if (layer_.size() == 0) process();
return layer_[i];
};
/* Return a 1D column vector which references a piece of the contiguous memory.
* If a sub-matrix vector has not been created, it is created.
*/
Vector1D<T>& vec(size_t i) {
assert(i < row_w_);
if (vecs_.size() == 0) process_vecs();
return vecs_[i];
};
/* Write the contents of the buffer into device memory.
* \param[in] buf Buffer to copy from.
*/
void write(T* buf) {
assert(buf != NULL);
cudaError_t rval = cudaMemcpy(data_, buf, size_bytes, cudaMemcpyHostToDevice);
assert(rval == cudaSuccess);
};
/* read data from the device into the provided buffer
* \param[in] buf Buffer to write memory into. */
void read(T* buf) const {
assert(buf != NULL);
cudaError_t rval = cudaMemcpy(buf, data_, size_bytes, cudaMemcpyDeviceToHost);
assert(rval == cudaSuccess);
};
/* \return Height of column */
size_t height() const {return column_h_; };
/* \return Width of row */
size_t width() const {return row_w_; };
/* \return a pointer to the data buffer. */
T* get_data() {return data_; };
private:
// dimensions
size_t column_h_;
size_t row_w_;
// size of the array in bytes
size_t size_bytes;
// pointer to memory chunk containing data
T* data_;
// whether this is a sub-matrix, if not then data must be deleted
bool internal_;
// an array to hold sub-matrices
std::vector<Matrix1D<T>> layer_;
// an array to hold column vectors
std::vector<Vector1D<T>> vecs_;
// create sub-data array
void process() {
if (layer_.size() != 0) return;
// create an array of row matrices to return if indexed
for (int i=0; i < row_w_; i++) {
layer_.push_back(Matrix1D<T>(row_w_, data_+(i * row_w_)));
}
};
// create sub-data array of column vectors
void process_vecs() {
if (vecs_.size() != 0) return;
// create an array of column vectors to return if indexed
for (int i=0; i < row_w_; i++) {
vecs_.push_back(Vector1D<T>(row_w_, data_+(i * row_w_)));
}
};
};
/* A 1D row matrix (transpose of vector), whose data is stored contigously in device memory.
* Indexing returns a reference to an entry in that memory.
*/
template <class T>
class Matrix1D {
public:
/* Create a 1D matrix of the specified size.
* If data_loc is not NULL, then the data will be set to
* that location and will not be deleted upon deconstuction.
* \param[in] row_w Width of a child 2D matrix's row
* \param[in] data_loc Pointer to the data to reference. Default NULL means new allocation.
*/
Matrix1D(size_t row_w, T* data_loc=NULL) {
// set dimensions
row_w_ = row_w;
size_bytes = sizeof(T) * row_w_;
// Allocate or reference data. Record if new allocated for later deletion.
if (data_loc == NULL) {
internal_ = false;
cudaError_t rval = cudaMalloc(&data_, size_bytes);
assert(rval == cudaSuccess);
}
else {
internal_ = true;
data_ = data_loc;
}
};
/* Deconstuction only deletes data if it was created in the constructor */
~Matrix1D() {
// only delete if originally new allocated
if (!internal_) cudaFree(data_);
};
/* Return a reference to a piece of the contiguous memory.
*/
device_ptr<T>& operator [](size_t i) {
assert(i < row_w_);
if (ptrs_.size() == 0) process();
return ptrs_[i];
};
/* Write the contents of the buffer into device memory.
* \param[in] buf Buffer to copy from.
*/
void write(T* buf) {
assert(buf != NULL);
cudaError_t rval = cudaMemcpy(data_, buf, size_bytes, cudaMemcpyHostToDevice);
assert(rval == cudaSuccess);
};
/* read data from the device into the provided buffer
* \param[in] buf Buffer to write memory into. */
void read(T* buf) const {
assert(buf != NULL);
cudaError_t rval = cudaMemcpy(buf, data_, size_bytes, cudaMemcpyDeviceToHost);
assert(rval == cudaSuccess);
};
/* \return Width of row */
size_t width() const {return row_w_; };
/* \return a pointer to the data buffer. */
T* get_data() {return data_; };
private:
// dimensions
size_t row_w_;
// size of the array in bytes
size_t size_bytes;
// pointer to memory chunk containing data
T* data_;
// whether this is a sub-matrix, if not then data must be deleted
bool internal_;
// an array to hold the device pointers to memory
std::vector<device_ptr<T>> ptrs_;
// create sub-data array
void process() {
if (ptrs_.size() != 0) return;
for (int i=0; i < row_w_; i++) {
ptrs_.push_back(device_ptr<T>(data_+i));
}
};
};
/* A 1D column vector, whose data is stored contigously in device memory.
* Indexing returns a reference to an entry in that memory.
*/
template <class T>
class Vector1D {
public:
/* Create a 1D matrix of the specified size.
* Data will be allocated and deleted upon deconstuction.
* \param[in] size Length of the vector
*/
Vector1D(size_t size, T* data_loc=NULL) {
// set dimensions
size_ = size;
size_bytes = sizeof(T) * size_;
// Allocate or reference data. Record if new allocated for later deletion.
if (data_loc == NULL) {
internal_ = false;
cudaError_t rval = cudaMalloc(&data_, size_bytes);
assert(rval == cudaSuccess);
}
else {
internal_ = true;
data_ = data_loc;
}
};
/* Deconstuction only deletes data if it was created in the constructor */
~Vector1D() {
// only delete if originally new allocated
if (!internal_) cudaFree(data_);
};
/* Return a reference to a piece of the contiguous memory.
*/
device_ptr<T>& operator [](size_t i) {
assert(i < size_);
if (ptrs_.size() == 0) process();
return ptrs_[i];
};
/* Write the contents of the buffer into device memory.
* \param[in] buf Buffer to copy from.
*/
void write(T* buf) {
assert(buf != NULL);
cudaError_t rval = cudaMemcpy(data_, buf, size_bytes, cudaMemcpyHostToDevice);
assert(rval == cudaSuccess);
};
/* read data from the device.
* If no buffer given, one will be new allocated and must be freed by caller.
* \param[in] buf Buffer to write memory into. */
void read(T* buf) const {
assert(buf != NULL);
cudaError_t rval = cudaMemcpy(buf, data_, size_bytes, cudaMemcpyDeviceToHost);
assert(rval == cudaSuccess);
};
/* \return Width of row */
size_t size() {return size_; };
/* \return a pointer to the data. */
T* get_data() {return data_; };
private:
// dimensions
size_t size_;
// size of the array in bytes
size_t size_bytes;
// pointer to memory chunk containing data
T* data_;
// whether this is a sub-matrix, if not then data must be deleted
bool internal_;
// an array to hold the device pointers to memory
std::vector<device_ptr<T>> ptrs_;
// create sub-data array
void process() {
if (ptrs_.size() != 0) return;
for (int i=0; i < size_; i++) {
ptrs_.push_back(device_ptr<T>(data_+i));
}
};
};
/* A pointer to an object in device memory.
*/
template <class T>
class device_ptr {
public:
device_ptr(T* data_loc=NULL) {
size_bytes = sizeof(T);
// Allocate or reference data. Record if new allocated for later deletion.
if (data_loc == NULL) {
internal_ = false;
cudaError_t rval = cudaMalloc(&data_, size_bytes);
assert(rval == cudaSuccess);
}
else {
internal_ = true;
data_ = data_loc;
}
};
~device_ptr() {
// only delete if originally new allocated
if (!internal_) cudaFree(data_);
};
/* Write the contents of the buffer into device memory.
* \param[in] buf Buffer to copy from.
*/
void write(T* buf) {
assert(buf != NULL);
cudaError_t rval = cudaMemcpy(data_, buf, size_bytes, cudaMemcpyHostToDevice);
assert(rval == cudaSuccess);
}
/* Write the contents of the buffer into using an object instead of buffer.
* \param[in] input Object to copy from.
*/
void set(T input) {
T* buf = new T;
*buf = input;
write(buf);
delete buf;
};
/* read data from the device into the provided buffer
* \param[in] buf Buffer to write memory into. */
void read(T* buf) const {
assert(buf != NULL);
cudaError_t rval = cudaMemcpy(buf, data_, size_bytes, cudaMemcpyDeviceToHost);
assert(rval == cudaSuccess);
}
/* \return The contents of the pointer as an object */
T get() const {
T* buf = new T;
read(buf);
T val = *buf;
delete buf;
return val;
};
/* \return a pointer to the data buffer. */
T* get_data() {return data_; };
private:
// size of the object in bytes
size_t size_bytes;
// pointer to the object in device memory
T* data_;
// whether this is a sub-object, if not then data must be deleted
bool internal_;
};
}
#endif