forked from urbste/MLPnP_matlab_toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_ordinary_3d_sigma.m
259 lines (215 loc) · 10.4 KB
/
main_ordinary_3d_sigma.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% this toolbox is an addition to the toolbox provided by the authors of
% CEPPnP and OPnP
% we extended it to show the use of MLPnP
% if you use this file it would be neat to cite our paper:
%
% @INPROCEEDINGS {mlpnp2016,
% author = "Urban, S.; Leitloff, J.; Hinz, S.",
% title = "MLPNP - A REAL-TIME MAXIMUM LIKELIHOOD SOLUTION TO THE PERSPECTIVE-N-POINT PROBLEM.",
% booktitle = "ISPRS Annals of Photogrammetry, Remote Sensing \& Spatial Information Sciences",
% year = "2016",
% volume = "3",
% pages = "131-138"}
%
% Copyright (C) <2016> <Steffen Urban>
% Steffen Urban email: urbste@googlemail.com
% Copyright (C) 2016 Steffen Urban
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License along
% with this program; if not, write to the Free Software Foundation, Inc.,
% 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 28.06.2016 Steffen Urban
clear; clc;
IniToolbox;
% experimental parameters
nls = [1:10];
npts = 50; % must be a scalar
num = 200;
% compared methods
A= zeros(size(npts));
B= zeros(num,1);
% compared methods
A= zeros(size(npts));
B= zeros(num,1);
% if you want to use UPnP you have to download and install OpenGV
% also if you want to reproduce the runtime shown in the MLPnP paper
% yout have to install the OpenGV fork with MLPnP
name = {'MLPnPWithCov','MLPnP','LHM', 'EPnP+GN', 'RPnP', 'DLS', 'PPnP', 'ASPnP', 'SDP','OPnP', 'EPPnP', 'CEPPnP'};
f = {@MLPNP_with_COV, @MLPNP_without_COV,@LHM, @EPnP_GN, @RPnP, @robust_dls_pnp, @PPnP, @ASPnP, @GOP, @OPnP, @EPPnP, @CEPPnP};
marker = { 'x', 'd', 's', 'd', '^', '*', '<', 'v', '>','o','+','<'};
color = {'g', 'g', 'c', [1,0.5,0],'m', [1,0.5,1], 'b', 'y', 'r','k','k',[1,0.5,0.5]};
markerfacecolor = {'g','b','c',[1,0.5,0],'m', [1,0.5,1], 'b', 'y', 'r','k','n',[0,0.5,0.5]};
method_list= struct('name', name, 'f', f, 'mean_r', A, 'mean_t', A,...
'med_r', A, 'med_t', A, 'std_r', A, 'std_t', A, 'r', B, 't', B,...
'marker', marker, 'color', color, 'markerfacecolor', markerfacecolor);
meanR = zeros(length(npts),length(method_list)+1);
medianR = zeros(length(npts),length(method_list)+1);
meanT = zeros(length(npts),length(method_list)+1);
medianT = zeros(length(npts),length(method_list)+1);
% experiments
for i= 1:length(nls)
npt = npts;
nl = rand(1,npts) * nls(i); %stds
fprintf('npt = %d (max sg = %d ): ', npt, nls(i));
for k= 1:length(method_list)
method_list(k).c = zeros(1,num);
method_list(k).e = zeros(1,num);
method_list(k).r = zeros(1,num);
method_list(k).t = zeros(1,num);
end
%index_fail = [];
index_fail = cell(1,length(name));
for j= 1:num
% camera's parameters
width = 640;
height = 480;
f = 800;
K = [f 0 0; 0 f 0; 0 0 1];
% generate 3d coordinates in camera space
Xc = [xrand(1,npt,[-2 2]); xrand(1,npt,[-2 2]); xrand(1,npt,[4 8])];
t = mean(Xc,2);
R = rodrigues(randn(3,1));
XXw = inv(R)*(Xc-repmat(t,1,npt));
% projection
xx = [Xc(1,:)./Xc(3,:); Xc(2,:)./Xc(3,:)]*f;
randomvals = randn(2,npt);
xxn= xx+randomvals.*[nl;nl];
homx = [xxn/f; ones(1,size(xxn,2))];
v = normc(homx);
Cu = zeros(2,2,npt);
Evv = zeros(3,3,npt);
cov = zeros(9,size(Cu,3));
for id = 1:npt
Cu(:,:,id) = diag([nl(id)^2 nl(id)^2]);
cov_proj = K\diag([nl(id)^2 nl(id)^2 0])/K';
J = (eye(3)-(v(:,id)*v(:,id)')/(v(:,id)'*v(:,id)))/norm(homx(:,id));
Evv(:,:,id) = J*cov_proj*J';
cov(:,id) = reshape(Evv(:,:,id),9,1);
end
% pose estimation
R1 = []; t1 = []; inliers = [];
for k= 1:length(method_list)
if strcmp(method_list(k).name, 'Reproj')
[R1,t1]= method_list(k).f([XXw, XXwo],[xxn, xxo]/f,R,t);
else
try
if strcmp(method_list(k).name, 'CEPPnP')
tic;
mXXw = XXw - repmat(mean(XXw,2),1,size(XXw,2));
[R1,t1]= method_list(k).f(mXXw,xxn/f,Cu);
t1 = t1 - R1 * mean(XXw,2);
tcost = toc;
elseif strcmp(method_list(k).name, 'MLPnP') || ...
strcmp(method_list(k).name, 'MLPnPWithCov')
tic;
[R1,t1]= method_list(k).f(XXw,v,cov);
tcost = toc;
else
tic;
[R1,t1]= method_list(k).f(XXw,xxn/f);
tcost = toc;
end
catch
disp(['The solver - ',method_list(k).name,' - encounters internal errors!!!']);
%index_fail = [index_fail, j];
index_fail{k} = [index_fail{k}, j];
break;
end
end
%no solution
if size(t1,2) < 1
disp(['The solver - ',method_list(k).name,' - returns no solution!!!\n']);
index_fail{k} = [index_fail{k}, j];
%continue;
break;
elseif (sum(sum(sum(imag(R1).^2))>0) == size(R1,3) || sum(sum(imag(t1(:,:,1)).^2)>0) == size(t1,2))
index_fail{k} = [index_fail{k}, j];
continue;
end
%choose the solution with smallest error
error = inf;
for jjj = 1:size(R1,3)
if (sum(sum(imag(R1(:,:,jjj)).^2)) + sum(imag(t1(:,jjj)).^2) > 0)
break
end
tempy = cal_pose_err([R1(:,:,jjj) t1(:,jjj)],[R t]);
if sum(tempy) < error
cost = tcost;
%L2 error is computed without taing into account the outliers
ercorr= mean(sqrt(sum((R1(:,:,jjj) * XXw + t1(:,jjj) * ones(1,npt) - Xc).^2)));
y = tempy;
error = sum(tempy);
end
end
method_list(k).c(j)= cost * 1000;
method_list(k).e(j)= ercorr;
method_list(k).r(j)= y(1);
method_list(k).t(j)= y(2);
end
showpercent(j,num);
end
fprintf('\n');
% save result
for k= 1:length(method_list)
%results without deleting solutions
tmethod_list = method_list(k);
method_list(k).c(index_fail{k}) = [];
method_list(k).e(index_fail{k}) = [];
method_list(k).r(index_fail{k}) = [];
method_list(k).t(index_fail{k}) = [];
% computational cost should be computed in a separated procedure as
% in main_time.m
method_list(k).pfail(i) = 100 * numel(index_fail{k})/num;
method_list(k).mean_c(i)= mean(method_list(k).c);
method_list(k).mean_e(i)= mean(method_list(k).e);
method_list(k).med_c(i)= median(method_list(k).c);
method_list(k).med_e(i)= median(method_list(k).e);
method_list(k).std_c(i)= std(method_list(k).c);
method_list(k).std_e(i)= std(method_list(k).e);
method_list(k).mean_r(i)= mean(method_list(k).r);
method_list(k).mean_t(i)= mean(method_list(k).t);
method_list(k).med_r(i)= median(method_list(k).r);
method_list(k).med_t(i)= median(method_list(k).t);
method_list(k).std_r(i)= std(method_list(k).r);
method_list(k).std_t(i)= std(method_list(k).t);
meanR (i,1) = nls(i);
meanT (i,1) = nls(i);
medianR (i,1) = nls(i);
medianT (i,1) = nls(i);
meanR(i,k+1) = method_list(k).mean_r(i);
meanT(i,k+1) = method_list(k).mean_t(i);
medianR(i,k+1) = method_list(k).med_r(i);
medianT(i,k+1) = method_list(k).med_t(i);
%results deleting solutions where not all the methods finds one
tmethod_list.c(unique([index_fail{:}])) = [];
tmethod_list.e(unique([index_fail{:}])) = [];
tmethod_list.r(unique([index_fail{:}])) = [];
tmethod_list.t(unique([index_fail{:}])) = [];
method_list(k).deleted_mean_c(i)= mean(tmethod_list.c);
method_list(k).deleted_mean_e(i)= mean(tmethod_list.e);
method_list(k).deleted_med_c(i)= median(tmethod_list.c);
method_list(k).deleted_med_e(i)= median(tmethod_list.e);
method_list(k).deleted_std_c(i)= std(tmethod_list.c);
method_list(k).deleted_std_e(i)= std(tmethod_list.e);
method_list(k).deleted_mean_r(i)= mean(tmethod_list.r);
method_list(k).deleted_mean_t(i)= mean(tmethod_list.t);
method_list(k).deleted_med_r(i)= median(tmethod_list.r);
method_list(k).deleted_med_t(i)= median(tmethod_list.t);
method_list(k).deleted_std_r(i)= std(tmethod_list.r);
method_list(k).deleted_std_t(i)= std(tmethod_list.t);
end
end
save ordinary3DresultsSigma method_list npt nls;
plotOrdinary3Dsigmas;