-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
467 lines (406 loc) · 17.6 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
# Author: Yu-Lun Hsu
# Student ID: 0716235
# HW ID: Hw3
# Due Date: 05/19/2022
import argparse
import json
import os
import random
import re
import string
from glob import glob
from typing import Any, Dict, List, Tuple, Union
import spacy
from nltk.lm import MLE, KneserNeyInterpolated, Laplace, WittenBellInterpolated
from nltk.lm.preprocessing import everygrams
from nltk.util import flatten
from spacy.tokens import Doc, Span, Token
from tqdm import tqdm
import utils
# Type define
Model = Union[MLE, Laplace, KneserNeyInterpolated, WittenBellInterpolated]
# Rules define
PUNCTUATON = set(string.punctuation)
PUNCTUATON.remove('_')
EXCEPTION_DOT = {"a.m.", "p.m.", "e.g.",
"mr.", "ms.", "mrs.", "dr.", "st.", "u.s."}
# Global Variable
assert spacy.prefer_gpu(), "Cannot run with gpu"
NLP = spacy.load('en_core_web_sm', disable=[
"tok2vec", "ner", "lemmatizer", "textcat"])
# Dubug Variable
DEBUG_ALL_ZERO = 0
def LoadRawJson() -> List[dict]:
'''
Load jsons from "hw3/train/*.json"
'''
print("- Start Loading Jsons")
src = glob(os.path.join("./hw3/train", "*.json"))
raw: List[dict] = []
with tqdm(total=len(src)) as pbar:
for file in src:
with open(file, 'r') as F:
data: dict = json.load(F)
raw.append(data)
pbar.update(1)
return raw
def LoadExternalCorpus() -> List[str]:
'''
Return external training set of cnn data
'''
# TODO : 如果全部為0的比率很高,觀察加入external corpus能提升多少accuracy
result: List[str] = []
print("- Start Loading External Training Set [BLOGS]")
with open("./en_US/en_US.blogs.txt", 'r', encoding="utf-8") as F:
result = [f.strip() for f in F.readlines()]
return result
def TrainTestSplit(dataset: List[dict], test_size: Union[int, float] = 0.1, seed: int = None) -> Tuple[list, list]:
'''
Train test split with test_size
'''
random.seed(seed)
size: int = 0
if isinstance(test_size, int):
assert test_size <= len(dataset), "test_size <= len(dataset)"
size = test_size
elif isinstance(test_size, float):
assert test_size < 1.0, "0 <= test_size <= 1"
size = int(len(dataset)*test_size)
idxs = list(range(len(dataset)))
test_set_idx = random.choices(idxs, k=size)
train_set_idx = list(set(idxs)-set(test_set_idx))
train_set = [dataset[i] for i in train_set_idx]
test_set = [dataset[i] for i in test_set_idx]
return train_set, test_set
def ResolveTrainingSet(dataset: List[dict]) -> List[str]:
'''
Recover training corpus from raw json data
'''
training_set: List[str] = []
for data in dataset:
result: str = data["article"]
answers: List[str] = [data["answers"][_]
for _ in data["answers"]]
options: List[str] = [''] * len(answers)
for i, [(_, v), ans] in enumerate(zip(data["options"].items(), answers)):
options[i] = v[ord(ans)-ord('A')]
for op in options:
result = result.replace(" _ ", " {} ".format(op), 1)
training_set.append(result)
return training_set
def ResolveTestingSet(dataset: List[dict]) -> Tuple[List[Dict[str, str]], Dict[str, str]]:
'''
Return (list of {articles,options}, answers)
'''
testing_set: List[Dict[str, str]] = []
answers_set: Dict[str, str] = {}
for data in dataset:
answers: Dict[str, str] = data["answers"]
options: List[Dict[str, List[str]]] = data["options"]
answers_set = {**answers_set, **answers}
testing_set.append({
"article": data["article"],
"options": options
})
return testing_set, answers_set
def preprocess(context: str, testing: bool = False) -> Tuple[List[List[Union[str, Any]]], ]:
'''
prepocess text for tokenizing
when testing mode, do not add dependency bigram
'''
# TODO : 先對context做去除所有符號和數字並且保留符號 ' , . _ -和空格
# TODO : 刪掉兩個 . 以上的
# TODO : 刪掉兩個 - 以上的
# TODO : 刪掉兩個 ' 以上的
# TODO : 刪除前綴和後綴的-
# TODO : 由於有些字母依然會包含 . 所沒有在EXCEPTION_DOT中的要做split把點去掉
result: List[List[Union[str, Any]]] = []
context = re.sub('\d+', " ", context)
context = re.sub(r"[^\w' ,._-]", " ", context)
context = re.sub(r'(\.){2,}', ' ', context)
context = re.sub(r'(\'){2,}', ' ', context)
context = re.sub(r'(-){2,}', ' ', context)
context = context.strip('-')
docs = NLP(context)
# Do normal process
for sent in docs.sents:
tkn = [x.lower_ for x in sent if (
not x.is_space) and (not x.text in PUNCTUATON)]
clean: List[str] = []
for dirty in tkn:
if dirty in EXCEPTION_DOT:
clean.append(dirty)
else:
for d in dirty.split('.'):
if len(d)==1 and d not in {"i","a","_"}: continue
if len(d) > 0:
d = d.replace("'m",'am').replace("n't","not").replace("'ve","have").replace("'ll","will")
clean.append(d)
result.append(clean)
return result
def Tokenizer(contexts: List[str]) -> List[List[str]]:
'''
contexts is a list of paragraphs
'''
print("- Start Tokenize")
tknz_texts = []
with tqdm(total=len(contexts)) as pbar:
for context in contexts:
pbar.update(1)
tokenized_text = preprocess(context)
tknz_texts.extend(tokenized_text)
return tknz_texts
def Train(n_gram: int, tknz: List[List[str]], model: Union[str, Model] = "MLE", **kwargs) -> Model:
'''
Train with selected model
'''
assert model in ["MLE", "Laplace", "KneserNeyInterpolated",
"WittenBellInterpolated"] or model in [MLE, Laplace, KneserNeyInterpolated, WittenBellInterpolated], "undefined model type"
print("- Start Padding")
all_grams = [list(everygrams(tz, max_len=n_gram)) for tz in tknz]
all_vocab = flatten(tknz)
print("- Start Training with model {}".format(model))
basic_model: Model
if model == "MLE" or model == MLE:
basic_model = MLE(n_gram, **kwargs)
elif model == "Laplace" or model == Laplace:
basic_model = Laplace(n_gram, **kwargs)
elif model == "KneserNeyInterpolated" or model == KneserNeyInterpolated:
basic_model = KneserNeyInterpolated(n_gram, **kwargs)
elif model == "WittenBellInterpolated" or model == WittenBellInterpolated:
basic_model = WittenBellInterpolated(n_gram, **kwargs)
basic_model.fit(all_grams, all_vocab)
return basic_model
def Prediction(model: Model, n_gram: int, dataset: List[dict],) -> Dict[str, str]:
'''
Call getMaximumScore to selected argmax(scores of options)
'''
print("- Start Prediction")
answer_dict: Dict[str, str] = {}
with tqdm(total=len(dataset)) as pbar:
for question in dataset:
start_row: int = 0
start_idx: int = 0
article_token = preprocess(question["article"], testing=True)
for (ques_num, ops) in question["options"].items():
argmax_i, start_row, start_idx = getMaximumScore(
model, n_gram, start_row, start_idx, article_token, ops)
answer_dict[ques_num] = chr(argmax_i+ord('A'))
start_idx += 1
pbar.update(1)
return answer_dict
def getMaximumScore(model: Model, max_ngram: int, start_row: int, start_idx: int, article_token: List[List[Union[str, Any]]], ops: List[str]) -> Tuple[int, int]:
'''
The main scoring function
return (argmax element,new start_row, new start_idx)
NOTE: the article_token will be modified
'''
global DEBUG_ALL_ZERO
idx: int = start_idx
row: int = start_row
while True:
try:
idx = article_token[row].index("_", idx)
break
except:
idx = 0
row += 1
scores: List[int] = [0] * len(ops)
for i, op in enumerate(ops):
subset: List[str] = article_token[row][max(0, idx-max_ngram+1):idx]
assert len(subset) <= max_ngram-1, "lenght of subset({}) needs to be equal to or less than max_ngram-1({})".format(
len(subset), max_ngram-1)
# Perform lemmatize on each option (maybe apply on NOUN?)
tmp = NLP(op)[0]
lower_op = tmp.lower_
if idx > 0 and idx < len(article_token[row])-1:
# TODO : 計算maxScore時不只以 XX_ 的方式取得ngram的score, 也同時考慮 _XX 和 X_X
middle: List[str] = subset + [lower_op]
next_word: str = article_token[row][idx+1]
score = (model.score(lower_op, subset) +
model.score(next_word, middle))/2
else:
score = model.score(lower_op, subset)
scores[i] = score
if all(s == 0 for s in scores):
DEBUG_ALL_ZERO += 1
argmax_i, _ = utils.argmax(scores)
article_token[row][idx] = ops[argmax_i]
return argmax_i, row, idx
def Evaluation(pred: Dict[str, str], actual: Dict[str, str]):
'''
Display evaluation matrix
Return
-------
- accuracy
- precision
- recall
- f1_score
'''
assert len(pred) == len(actual), "length of two input must be same"
labels = ord(max(max(pred.values()), max(actual.values())))-ord('A')+1
metric = [[0]*labels for _ in range(labels)]
# Compute confusion matrix by metric[actual][pred]
for k, v in pred.items():
metric[ord(actual[k])-ord('A')][ord(v)-ord('A')] += 1
# Internal variables
correct_elem: List[float] = [metric[i][i] for i in range(labels)]
actual_elem: List[float] = [sum(metric[i]) for i in range(labels)]
pred_elem: List[float] = [sum(x) for x in zip(*metric)]
# Compute accuracy
# Compute precision (預測A而且正確的/所有預測是A的)
# Compute recall (預測A而且正確的/所有真正是A的)
accuracy: float = round(sum(correct_elem)/len(pred), 4)
precision: List[float] = [round(correct_elem[i]/pred_elem[i], 2) if pred_elem[i] != 0 else "NaN"
for i in range(labels)]
recall: List[float] = [round(correct_elem[i]/actual_elem[i], 2) if actual_elem[i] != 0 else "NaN"
for i in range(labels)]
f1_score: List[float] = [round(2*precision[i]*recall[i]/(precision[i]+recall[i]), 2)
if precision[i]+recall[i] != 0 else "NaN" for i in range(labels)]
print("====================================")
print("Accuracy : {}".format(accuracy))
print("Precision : {}".format(precision))
print("Recall : {}".format(recall))
print("F1-Score : {}".format(f1_score))
print("Confusion Matrix:")
for i in range(labels+1):
if i == 0:
print("{:<7s}".format(''), end='')
else:
print("{:<7s}".format(chr(i-1+ord('A'))+'?'), end='')
print()
for a in range(labels):
print("{:<7s}".format(chr(a + ord('A'))), end='')
for p in range(labels):
print("{:<7d}".format(metric[a][p]), end='')
print()
print("All zero rate: {}".format(DEBUG_ALL_ZERO))
print("====================================")
return accuracy, precision, recall, f1_score
def Solve(model: Model, n_gram: int, path: str = "result.csv") -> Dict[str, str]:
'''
Solve for submitting answers
'''
dataset: List[dict] = []
test_list = glob(os.path.join("./hw3/test", "*.json"))
print("- Start Solving")
for file in test_list:
with open(file, 'r') as F:
question: dict = json.load(F)
dataset.append(question)
answer_dict = Prediction(model, n_gram, dataset)
utils.dict_writer(answer_dict, path)
return answer_dict
def Analysis(path: str):
'''
Show most common and next word prediction(length=15)
'''
model: Model = utils.load_pkl(path)
most = model.vocab.counts.most_common(10)
maximum = max([v for _, v in most])
print("===============MOST COMMON==================")
for k, v in most:
print("{:<15s}\t{:<20s}\t{}".format(k, '█'*int((v/maximum)*20), v))
print("================Generation===================")
sent1: str = model.generate(15, text_seed=['this', 'is'])
sent2: str = model.generate(15, text_seed=['he', 'said'])
sent3: str = model.generate(15, text_seed=['she', 'said'])
print(" * Sentence1:\n\tthis is {}".format(' '.join(sent1)))
print(" * Sentence2:\n\the said {}".format(' '.join(sent2)))
print(" * Sentence3:\n\tshe said {}".format(' '.join(sent3)))
print("=============================================")
'''
Lemmatize
https://www.machinelearningplus.com/nlp/lemmatization-examples-python/
Amazon ngram
https://rstudio-pubs-static.s3.amazonaws.com/96252_bd61a0777ad44d04b619ce95ca44219c.html
Preprocess
https://necromuralist.github.io/Neurotic-Networking/posts/nlp/n-gram-pre-processing/#orgefb0272
Next word prediction
https://juan0001.github.io/next-word-prediction/
Data spareness
https://aclanthology.org/O01-1002.pdf
https://medium.com/pyladies-taiwan/nltk-%E5%88%9D%E5%AD%B8%E6%8C%87%E5%8D%97-%E4%BA%8C-%E7%94%B1%E5%A4%96%E8%80%8C%E5%85%A7-%E5%BE%9E%E8%AA%9E%E6%96%99%E5%BA%AB%E5%88%B0%E5%AD%97%E8%A9%9E%E6%8B%86%E8%A7%A3-%E4%B8%8A%E6%89%8B%E7%AF%87-e9c632d2b16a
Datasets
https://github.com/JafferWilson/Process-Data-of-CNN-DailyMail
Introducing About Interpolations
https://www.cl.uni-heidelberg.de/courses/ss15/smt/scribe6.pdf
Hidden Markov
https://analyticsindiamag.com/a-guide-to-hidden-markov-model-and-its-applications-in-nlp/
'''
if __name__ == "__main__":
# Models: ["MLE", "Laplace", "KneserNeyInterpolated","WittenBellInterpolated"]
# Solve : 觀察 使用/不使用 stop words 之後的 統計前10名和accuracy
# Solve : 觀察 全部四個選項為0的比率占多少(代表其他都是random湊的), 在MLE是14000左右
# Solve : lemmatize可能只能對名詞用
# Bug [ok] : spacy 無法分辨破折號 "he is my husband----------------a sanders.she is a doctor."
# Bug [ok] : spacy 句號沒辦法分開: 不可以先用lower再用nlp, 模型無法分辨大小寫。
# BUg [ ]: mother's will be [mother,'s]
'''
Train Mode: python ./test.py -m [model name]
Generate Mode: python ./test.py -s true -m WittenBellInterpolated
Analysis Mode: python ./test.py -a true
'''
parser = argparse.ArgumentParser()
parser.add_argument("-n", "--ngram", type=int,
help="maximum order of ngram, default=4", choices=[1, 2, 3, 4, 5], default=4)
parser.add_argument("-s", "--submit", type=str,
help="for only generating kaggle submission, default to 'false': train and validate", default='false')
parser.add_argument("-a", "--analysis", type=str,
help="analysis tools when submit is false, default to 'false': train and validate", default='')
parser.add_argument("-m", "--models", type=str, nargs='+', help="declare model name, default to run all",
choices=["MLE", "Laplace", "KneserNeyInterpolated", "WittenBellInterpolated"], default=["MLE", "Laplace", "KneserNeyInterpolated", "WittenBellInterpolated"])
parser.add_argument("-e", "--epoch", type=int,
help="epoch of training(works when --submit is false), default to 5", default=5)
args = parser.parse_args()
# Configuration
ngram: int = args.ngram
epoch: int = args.epoch
models: List[str] = args.models
analysis_path: str = args.analysis
submit: bool = args.submit == 'true'
# Train & Validate
if not submit:
if analysis_path != "":
Analysis(analysis_path)
else:
dataset = LoadRawJson()
extra_training_set = LoadExternalCorpus()
history = {"MLE": 0, "Laplace": 0,
"KneserNeyInterpolated": 0, "WittenBellInterpolated": 0}
pending_model: List[str] = ["MLE", "Laplace",
"KneserNeyInterpolated", "WittenBellInterpolated"]
for model_name in models:
score = 0
for i in range(epoch):
DEBUG_ALL_ZERO = 0
training_set, testing_set = TrainTestSplit(
dataset, test_size=0.3)
training_set = ResolveTrainingSet(training_set)
training_set += extra_training_set
testing_set, actual = ResolveTestingSet(testing_set)
model = Train(ngram, Tokenizer(training_set), model_name)
preds = Prediction(model, ngram, testing_set)
acc, _, _, _ = Evaluation(preds, actual)
score += acc
utils.dump_pkl(
model, "./hw3/model/{}_{}_{}".format(model_name, int(acc*100), i))
history[model_name] = round(score/epoch, 4)
utils.dict_writer(history, "history.csv")
# Generation
else:
# This is my birthday
random.seed(890104)
dataset = LoadRawJson()
extra_training_set = LoadExternalCorpus()
training_set = ResolveTrainingSet(dataset)
tknz = Tokenizer(training_set+extra_training_set)
for model_name in models:
model = Train(ngram, tknz, model_name)
ans = Solve(model, ngram, "result_{}_ngram{}_ll.csv".format(
model_name, ngram))
utils.dump_pkl(
model, "./hw3/model/generate_{}_ll.pkl".format(model_name))
print("===============INFORMATION===============")
print("All zero rate: {}".format(
round(DEBUG_ALL_ZERO/len(ans), 2)))