-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcheckpoints.py
51 lines (46 loc) · 1.93 KB
/
checkpoints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""Loading and saving checkpoints."""
import os
import subprocess
import torch
import utils
def load(opt):
"""Select checkpoint to load."""
ckpt = opt.epochNum
if ckpt == 0:
print("".ljust(4) + "=> No checkpoint to load. Retrain the model.")
return None
else:
if ckpt == -1:
print("".ljust(4) + "=> Loading the latest checkpoint.")
ckpt_path = os.path.join(opt.resume, 'latest.pth')
elif ckpt == -2:
print("".ljust(4) + "=> Loading the best checkpoint.")
ckpt_path = os.path.join(opt.resume, 'best.pth')
else:
raise ValueError("Should not reach here!")
utils.check_file(ckpt_path)
return torch.load(ckpt_path)
def save(epoch, model, criterion, optim_state, best_model, loss, opt):
"""Save a checkpoint."""
if opt.saveOne:
cmd = ['rm -f']
cmd.append(os.path.join(opt.resume, '/model_*.pth'))
cmd.append(os.path.join(opt.resume, '/criterion_*.pth'))
cmd.append(os.path.join(opt.resume, '/optim_stat_*.pth'))
subprocess.call(' '.join(cmd), shell=True)
model_file = 'model_%i.pth' %epoch
criterion_file = 'criterion_%i.pth' %epoch
optim_file = 'optim_state_%i.pth' %epoch
torch.save(model, os.path.join(opt.resume, model_file))
torch.save(criterion, os.path.join(opt.resume, criterion_file))
torch.save(optim_state, os.path.join(opt.resume, optim_file))
info = {'epoch':epoch, 'model_file':model_file,
'criterion_file':criterion_file, 'optim_file':optim_file,
'loss':loss}
torch.save(info, os.path.join(opt.resume, 'latest.pth'))
if best_model:
info = {'epoch':epoch, 'model_file':model_file,
'criterion_file':criterion_file, 'optim_file':optim_file,
'loss':loss}
torch.save(info, os.path.join(opt.resume, 'best.pth'))
torch.save(model, os.path.join(opt.resume, 'model_best.pth'))