-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathopts.py
226 lines (208 loc) · 11.8 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
"""Argument parser for genral and model / data specific options."""
import os
import argparse
import torch
import utils
class Opts():
"""All configurations and hyperparameters."""
def __init__(self):
"""Process calling arguments."""
self.parse()
self.args.data = os.path.join(self.args.rootDir, self.args.dataset)
self.args.model = os.path.join(self.args.rootDir, 'exp')
# Set torch default tensor type and random seed
torch.set_default_tensor_type('torch.FloatTensor')
torch.manual_seed(self.args.manualSeed)
# Indicate the model type. This indicates what is expected from
# the lattice objects
if self.args.lattice_type.lower() == 'grapheme':
lattice_type_tag = 'G'
elif self.args.lattice_type.lower() == 'word':
self.args.grapheme_features = 0
self.args.grapheme_hidden_size = 0
self.args.grapheme_combination = 'None'
lattice_type_tag = 'W'
else:
raise Exception('Not a valid lattice type')
# Customized parameters for the network
arch = self.args.arch.split('-')
assert len(arch) == 4, 'bad architecture input argument'
self.args.nLSTMLayers = int(arch[0])
self.args.hiddenSize = int(arch[1])
self.args.nFCLayers = int(arch[2])
self.args.linearSize = int(arch[3])
self.args.bidirectional = True
# Grapheme mergering architecture
grapheme_arch = self.args.grapheme_arch.split('-')
assert len(grapheme_arch) == 2, 'bad grapheme model architecture input argument'
self.args.grapheme_num_layers = int(grapheme_arch[0])
self.args.grapheme_hidden_size = int(grapheme_arch[1])
self.args.grapheme_bidirectional = True
if self.args.grapheme_combination == 'None':
# Won't read in the grapheme information
self.args.grapheme_features = 0
self.args.grapheme_hidden_size = 0
# Customized parameters for dataset
if 'onebest' in self.args.dataset:
# TODO: Test this input size
print('Warning: Untested code')
self.args.inputSize = 52
self.args.onebest = True
elif self.args.dataset.startswith('lattice') or self.args.dataset.endswith('-lat'):
# Is a lattice dataset
self.args.inputSize = 54
if self.args.grapheme_encoding:
self.args.inputSize += self.args.grapheme_hidden_size * 2
else:
self.args.inputSize += self.args.grapheme_features
elif self.args.dataset.startswith('confnet') or self.args.dataset.endswith('-cn'):
# Is a confusion network dataset
self.args.inputSize = 52
if 'lm' in self.args.dataset and 'am' in self.args.dataset:
# Include LM and AM
self.args.inputSize += 2
if self.args.grapheme_encoding:
self.args.inputSize += self.args.grapheme_hidden_size * 2
else:
self.args.inputSize += self.args.grapheme_features
else:
# TODO: Make cleaner
self.args.inputSize = 54 + self.args.grapheme_features
# raise ValueError('Expecting the dataset name to indicate if 1-best, lattice, or confusion network')
if self.args.forceInputSize != -1:
# Override implicit input size code above
self.args.inputSize = self.args.forceInputSize
if self.args.arc_combine_method == 'attention':
self.args.attentionLayers = 1
self.args.attentionSize = 64
# Settings for debug mode
if self.args.debug:
self.args.nEpochs = 2
self.args.nThreads = 1
# Build a useful hash key and model directory
if self.args.grapheme_encoding:
assert self.args.encoding_dropout <= 1 and self.args.encoding_dropout >= 0, \
'The dropout CLI argument must be a valid ratio'
grapheme_encoding_tag = 'E=' + str(self.args.grapheme_arch) + '-' + str(self.args.encoding_dropout) + '-' + str(self.args.encoder_type)
else:
self.args.encoding_dropout = 0
grapheme_encoding_tag = 'E=None'
# Setup model directory
self.args.hashKey = self.args.dataset \
+ '_' + self.args.arch \
+ '_' + self.args.arc_combine_method \
+ '_' + 'L='+str(self.args.LR) \
+ '_' + 'M='+str(self.args.momentum) \
+ '_' + 'S='+str(self.args.batchSize) \
+ '_' + 'O='+str(self.args.optimizer) \
+ '_' + 'D='+self.args.LRDecay \
+ '-' + str(self.args.LRDParam) \
+ '_' + str(lattice_type_tag) \
+ '_' + grapheme_encoding_tag \
+ '_' + 'F='+str(self.args.grapheme_features) \
+ '_' + 'G-C='+str(self.args.grapheme_combination) \
+ '_' + self.args.suffix
if self.args.debug:
self.args.hashKey += '_debug'
self.args.resume = os.path.join(self.args.model, self.args.hashKey)
utils.mkdir(self.args.resume)
# Display all options
utils.print_options(self.args)
def parse(self):
"""Parsing calling arguments."""
parser = argparse.ArgumentParser(description='parser for latticeRNN')
# General options
parser.add_argument('--debug', default=False, action="store_true",
help='Debug mode, only run 2 epochs and 1 thread')
parser.add_argument('--manualSeed', default=1, type=int,
help='Manual seed')
# Path options
parser.add_argument('--rootDir', type=str, required=True,
help='path to experiment root directory')
# Data options
parser.add_argument('--dataset', default='lattice_mapped_0.1_prec', type=str,
help='Name of dataset')
parser.add_argument('--target', default='target', type=str,
help='Name of target directory within the data directory')
parser.add_argument('--nThreads', default=10, type=int,
help='Number of data loading threads')
parser.add_argument('--trainPctg', default=1.0, type=float,
help='Percentage of taining data to use')
parser.add_argument('--shuffle', default=False, action="store_true",
help='Flag to shuffle the dataset before training')
parser.add_argument('--subtrain', default=False, action='store_true',
help='Run training on a subset of the dataset, but cross validation and test on the full sets')
parser.add_argument('--forceInputSize', default=-1, type=int,
help='Explicitly dictate the number of features to use')
# Grapheme data options
parser.add_argument('--lattice-type', default='word', choices=['grapheme', 'word'],
help='Indicate whether the grapheme information should be read from the lattice or not.')
parser.add_argument('--grapheme-features', default=5, type=int,
help='The number of grapheme features to consider, if any exists in the data.')
# Training/testing options
parser.add_argument('--nEpochs', default=15, type=int,
help='Number of total epochs to run')
parser.add_argument('--epochNum', default=0, type=int,
help='0=retrain|-1=latest|-2=best',
choices=[0, -1, -2])
parser.add_argument('--batchSize', default=1, type=int,
help='Mini-batch size')
parser.add_argument('--saveOne', default=False, action="store_true",
help='Only preserve one saved model')
parser.add_argument('--valOnly', default=False, action="store_true",
help='Run on validation set only')
parser.add_argument('--testOnly', default=False, action="store_true",
help='Run the test to see the performance')
parser.add_argument('--onebest', default=False, action="store_true",
help='Train on one-best path only')
# Optimization options
parser.add_argument('--LR', default=0.05, type=float,
help='Initial learning rate')
parser.add_argument('--LRDecay', default='none', type=str,
help='Learning rate decay method',
choices=['anneal', 'stepwise', 'newbob', 'none'])
parser.add_argument('--LRDParam', default=0.5, type=float,
help='Param for learning rate decay')
parser.add_argument('--momentum', default=0.5, type=float,
help='Momentum')
parser.add_argument('--weightDecay', default=1e-3, type=float,
help='Weight decay')
parser.add_argument('--clip', default=1.0, type=float,
help='Gradient clipping')
parser.add_argument('--optimizer', default='SGD', type=str,
help='Optimizer type',
choices=['SGD', 'Adam'])
# Word level model options
parser.add_argument('--init-word', default='kaiming_normal', type=str,
help='Initialisation method for linear layers',
choices=['uniform', 'normal',
'xavier_uniform', 'xavier_normal',
'kaiming_uniform', 'kaiming_normal'])
parser.add_argument('--arch', default='1-128-1-128', type=str,
help='Model architecture: '\
'nLSTMLayer-LSTMSize-nFCLayer-nFCSize')
parser.add_argument('--arc_combine-method', default='mean', type=str,
help='method for combining edges',
choices=['mean', 'max', 'posterior', 'attention'])
# Grapheme level model options
parser.add_argument('--init-grapheme', default='kaiming_normal', type=str,
help='Initialisation method for linear layers',
choices=['uniform', 'normal',
'xavier_uniform', 'xavier_normal',
'kaiming_uniform', 'kaiming_normal'])
parser.add_argument('--grapheme-combination', default='None', type=str,
help='The method to use for grapheme combination',
choices=['None', 'dot', 'mult', 'concat', 'scaled-dot', 'concat-enc-key'])
parser.add_argument('--grapheme-encoding', default=False, action="store_true",
help='Use a bidirectional recurrent structure to encode the grapheme information')
parser.add_argument('--encoder-type', default='RNN', type=str,
help='The type of bidirectional recurrent encoder to use for grapheme combination',
choices=['RNN', 'GRU', 'LSTM'])
parser.add_argument('--encoding-dropout', default=0, type=float,
help='The amount of dropout to apply in the bidirectional grapheme encoding')
parser.add_argument('--grapheme-arch', default='1-10', type=str,
help='Grapheme model architecture: num_layers-layer_size')
# Naming options
parser.add_argument('--suffix', default='LatticeRNN', type=str,
help='Suffix for saving the model')
self.args = parser.parse_args()