-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptmatch.R
166 lines (142 loc) · 7.64 KB
/
optmatch.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
library(caret)
library(ggplot2)
library(optmatch)
# This R code is a slight modification of code in Prof. Dylan Small's lecture
# It is used to construct rank based Mahalanobis distance with propensity score caliper
optmatch_caliper<-function(datatemp,nocontrols.per.match,ps.formula,mahal.formula,calipersd=.5){
# Comment about this code and subsequent matching code
# There is assumed to be no missing data in the variables that go into the
# propensity score model so that there is a propensity score for every variable in
# the data frame.
# Fit a propensity score using logistic regression with each covariate entering
# linearly into the logistic link function
# Put x=TRUE in order to have model object include design matrix
propscore.model=glm(ps.formula,family=binomial,data=datatemp)
# This model is to obtain model.matrix for mahalanobis distance.
mahal.model=glm(mahal.formula,family=binomial,x=TRUE,y=TRUE,data=datatemp)
datatemp$treated=mahal.model$y
datatemp$treatment=datatemp$treated
# Use the caret package to include all categories of categorical variables (i.e.,
# do not leave out one category) in X matrix
dmy=dummyVars(mahal.model$formula,data=datatemp)
Xmat=data.frame(predict(dmy,newdata=datatemp))
# Matrix of covariates to include in the Mahalanobis distance, for now include all
# covariates
Xmatmahal=Xmat
treated=datatemp$treated
datatemp$logit.ps=predict(propscore.model)
# Use Hansen (2009)’s rule for removing subjects who lack overlap
logit.propscore=datatemp$logit.ps
pooled.sd.logit.propscore=sqrt(var(logit.propscore[datatemp$treatment==1])/2+var(logit.propscore[datatemp$treatment==0])/2)
min.treated.logit.propscore=min(logit.propscore[datatemp$treatment==1])
max.control.logit.propscore=max(logit.propscore[datatemp$treatment==0])
# How many treated and control subjects lack overlap by Hansen's criterion
no.treated.lack.overlap=sum(logit.propscore[datatemp$treatment==1]>(max.control.logit.propscore+.5*pooled.sd.logit.propscore))
no.control.lack.overlap=sum(logit.propscore[datatemp$treatment==0]<(min.treated.logit.propscore-.5*pooled.sd.logit.propscore))
# If there are subjects who lack overlap, remove them from the datatemp dataset
datatemp.original=datatemp
datatemp.full=datatemp
Xmat.original=Xmat
Xmat.full=Xmat
if(no.treated.lack.overlap+no.control.lack.overlap>0){
which.remove=which((logit.propscore>(max.control.logit.propscore+.5*pooled.sd.logit.propscore))|(logit.propscore<(min.treated.logit.propscore-.5*pooled.sd.logit.propscore)))
datatemp=datatemp[-which.remove,]
datatemp.full=rbind(datatemp,datatemp.original[which.remove,])
Xmat=Xmat[-which.remove,]
Xmat.full=rbind(Xmat,Xmat.original[which.remove,])
Xmatmahal=Xmatmahal[-which.remove,]
}
# For the purposes of balance checking later, in datatemp.full, append
# the removed rows of datatemp to the end of datatemp
# Make the rownames in datatemp be 1:number of rows
rownames(datatemp)=seq(1,nrow(datatemp),1)
# Function for computing
# rank based Mahalanobis distance. Prevents an outlier from
# inflating the variance for a variable, thereby decreasing its importance.
# Also, the variances are not permitted to decrease as ties
# become more common, so that, for example, it is not more important
# to match on a rare binary variable than on a common binary variable
# z is a vector, length(z)=n, with z=1 for treated, z=0 for control
# X is a matrix with n rows containing variables in the distance
smahal=
function(z,X){
X<-as.matrix(X)
n<-dim(X)[1]
rownames(X)<-1:n
k<-dim(X)[2]
m<-sum(z)
for (j in 1:k) X[,j]<-rank(X[,j])
cv<-cov(X)
vuntied<-var(1:n)
rat<-sqrt(vuntied/diag(cv))
cv<-diag(rat)%*%cv%*%diag(rat)
out<-matrix(NA,m,n-m)
Xc<-X[z==0,]
Xt<-X[z==1,]
rownames(out)<-rownames(X)[z==1]
colnames(out)<-rownames(X)[z==0]
library(MASS)
icov<-ginv(cv)
for (i in 1:m) out[i,]<-mahalanobis(Xc,Xt[i,],icov,inverted=T)
out
}
# Function for adding a propensity score caliper to a distance matrix dmat
# calipersd is the caliper in terms of standard deviation of the logit propensity scoe
addcaliper=function(dmat,z,logitp,calipersd=.5,penalty=1000){
# Pooled within group standard devation
sd.logitp=sqrt((sd(logitp[z==1])^2+sd(logitp[z==0])^2)/2)
adif=abs(outer(logitp[z==1],logitp[z==0],"-"))
adif=(adif-(calipersd*sd.logitp))*(adif>(calipersd*sd.logitp))
dmat=dmat+adif*penalty
dmat
}
# Rank based Mahalanobis distance
distmat=smahal(datatemp$treated,Xmatmahal)
# Add caliper
distmat=addcaliper(distmat,datatemp$treated,datatemp$logit.ps,calipersd=.5)
# Label the rows and columns of the distance matrix by the rownames in datatemp
rownames(distmat)=rownames(datatemp)[datatemp$treated==1]
colnames(distmat)=rownames(datatemp)[datatemp$treated==0]
matchvec=pairmatch(distmat,controls=nocontrols.per.match,data=datatemp)
datatemp$matchvec=matchvec
## Create a matrix saying which control units each treated unit is matched to
## Create vectors of the subject indices of the treatment units ordered by
## their matched set and corresponding control unit
treated.subject.index=rep(0,sum(treated==1))
matched.control.subject.index.mat=matrix(rep(0,nocontrols.per.match*length(treated.subject.index)),ncol=nocontrols.per.match)
matchedset.index=substr(matchvec,start=3,stop=10)
matchedset.index.numeric=as.numeric(matchedset.index)
for(i in 1:length(treated.subject.index)){
matched.set.temp=which(matchedset.index.numeric==i)
treated.temp.index=which(datatemp$treated[matched.set.temp]==1)
treated.subject.index[i]=matched.set.temp[treated.temp.index]
matched.control.subject.index.mat[i,]=matched.set.temp[-treated.temp.index]
}
matched.control.subject.index=matched.control.subject.index.mat
Xmat.without.missing<-Xmat.full
treatedmat=Xmat.without.missing[datatemp.full$treated==1,];
# Standardized differences before matching
controlmat.before=Xmat.without.missing[datatemp.full$treated==0,];
controlmean.before=apply(controlmat.before,2,mean,na.rm=TRUE);
treatmean=apply(treatedmat,2,mean,na.rm=TRUE);
treatvar=apply(treatedmat,2,var,na.rm=TRUE);
controlvar=apply(controlmat.before,2,var,na.rm=TRUE);
stand.diff.before=(treatmean-controlmean.before)/sqrt((treatvar+controlvar)/2);
treatmat.after=Xmat.without.missing[treated.subject.index,]
controlmat.after=Xmat.without.missing[matched.control.subject.index,];
controlmean.after=apply(controlmat.after,2,mean,na.rm=TRUE);
treatmean.after=apply(treatmat.after,2,mean,na.rm=TRUE)
stand.diff.after=(treatmean-controlmean.after)/sqrt((treatvar+controlvar)/2)
res.stand.diff<-cbind(stand.diff.before,stand.diff.after)
res.mean<-cbind(treatmean.after,controlmean.before,controlmean.after)
print(round(res.stand.diff,2))
print(round(res.mean,2))
abs.stand.diff.before=stand.diff.before[-1]
abs.stand.diff.after=stand.diff.after[-1]
covariates=names(stand.diff.before[-1])
plot.dataframe=data.frame(abs.stand.diff=c(abs.stand.diff.before,abs.stand.diff.after),covariates=rep(covariates,2),type=c(rep("Before",length(covariates)),rep("After",length(covariates))))
p<-ggplot(plot.dataframe,aes(x=abs.stand.diff,y=covariates))+geom_point(size=2,aes(shape=type))+scale_shape_manual(values=c(4,1))+geom_vline(xintercept=c(-.1,.1),lty=2)+xlab("standardized differences in means")+ ylab("")
return(list(p=p,datatemp=datatemp,treated.subject.index=treated.subject.index,
matched.control.subject.index=matched.control.subject.index,
res.stand.diff=res.stand.diff,res.mean=res.mean))
}