-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathESN.py
270 lines (231 loc) · 10.4 KB
/
ESN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# -*- coding: utf-8 -*-
"""
Echo State Networks
http://minds.jacobs-university.de/mantas
http://organic.elis.ugent.be/
http://www.scholarpedia.org/article/Echo_state_network
Mantas Lukoševičius "A Practical Guide to Applying Echo State Networks"
Konrad Stanek "Reservoir computing in financial forecasting with committee methods"
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy import linalg
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error, roc_auc_score, roc_curve, accuracy_score
from sklearn.linear_model import Ridge, LogisticRegression
# generate Mackey-Glass time series
#import Oger
#train_signals = Oger.datasets.mackey_glass(sample_len=10000, tau=200, n_samples=1)
#savetxt(r'data\MackeyGlass_t200.txt', np.array(train_signals[0]).reshape(-1,1))
np.random.seed(42)
class ESN(object):
def __init__(self, resSize=500, rho=0.9, cr=0.05, leaking_rate=0.2, W=None):
"""
:param resSize: reservoir size
:param rho: spectral radius
:param cr: connectivity ratio
:param leaking_rate: leaking rate
:param W: predefined ESN reservoir
"""
self.resSize = resSize
self.leaking_rate = leaking_rate
if W is None:
# generate the ESN reservoir
N = resSize * resSize
W = np.random.rand(N) - 0.5
zero_index = np.random.permutation(N)[int(N * cr * 1.0):]
W[zero_index] = 0
W = W.reshape((self.resSize, self.resSize))
# Option 1 - direct scaling (quick&dirty, reservoir-specific):
#self.W *= 0.135
# Option 2 - normalizing and setting spectral radius (correct, slow):
print 'ESN init: Setting spectral radius...',
rhoW = max(abs(linalg.eig(W)[0]))
print 'done.'
W *= rho / rhoW
else:
assert W.shape[0] == W.shape[1] == resSize, "reservoir size mismatch"
self.W = W
def __init_states__(self, X, initLen, reset_state=True):
# allocate memory for the collected states matrix
self.S = np.zeros((len(X) - initLen, 1 + self.inSize + self.resSize))
if reset_state:
self.s = np.zeros(self.resSize)
s = self.s.copy()
# run the reservoir with the data and collect S
for t, u in enumerate(X):
s = (1 - self.leaking_rate) * s + self.leaking_rate *\
np.tanh(np.dot(self.Win, np.hstack((1, u))) +\
np.dot(self.W, s))
if t >= initLen:
self.S[t-initLen] = np.hstack((1, u, s))
if reset_state:
self.s = s
def fit(self, X, y, lmbd=1e-6, initLen=100, init_states=True):
"""
:param X: 1- or 2-dimensional array-like, shape (t,) or (t, d), where
: t - length of time series, d - dimensionality.
:param y : array-like, shape (t,). Target vector relative to X.
:param lmbd: regularization lambda
:param initLen: Number of samples to wash out the initial random state
:param init_states: False allows skipping states initialization if
: it was initialized before (with same X).
: Useful in experiments with different targets.
"""
assert len(X) == len(y), "input lengths mismatch."
self.inSize = 1 if np.ndim(X) == 1 else X.shape[1]
if init_states:
print("ESN fit_ridge: Initializing states..."),
self.Win = (np.random.rand(self.resSize, 1 + self.inSize) - 0.5) * 1
self.__init_states__(X, initLen)
print("done.")
self.ridge = Ridge(alpha=lmbd, fit_intercept=False,
solver='svd', tol=1e-6)
self.ridge.fit(self.S, y[initLen:])
return self
def fit_proba(self, X, y, lmbd=1e-6, initLen=100, init_states=True):
"""
:param X: 1- or 2-dimensional array-like, shape (t,) or (t, d)
:param y : array-like, shape (t,). Target vector relative to X.
:param lmbd: regularization lambda
:param initLen: Number of samples to wash out the initial random state
:param init_states: see above
"""
assert len(X) == len(y), "input lengths mismatch."
self.inSize = 1 if np.ndim(X) == 1 else X.shape[1]
if init_states:
print("ESN fit_proba: Initializing states..."),
self.Win = (np.random.rand(self.resSize, 1 + self.inSize) - 0.5) * 1
self.__init_states__(X, initLen)
print("done.")
self.logreg = LogisticRegression(C=1/lmbd, penalty='l2',
fit_intercept=False,
solver='liblinear')
self.logreg.fit(self.S, y[initLen:])
return self
def predict(self, X, init_states=True):
"""
:param X: 1- or 2-dimensional array-like, shape (t) or (t, d)
:param init_states: see above
"""
if init_states:
# assume states initialized with training data and we continue from there.
self.__init_states__(X, 0, reset_state=False)
y = self.ridge.predict(self.S)
return y
def predict_proba(self, X, init_states=True):
"""
:param X: 1- or 2-dimensional array-like, shape (t) or (t, d)
:param init_states: see above
"""
if init_states:
# assume states initialized with training data and we continue from there.
self.__init_states__(X, 0, reset_state=False)
y = self.logreg.predict_proba(self.S)
return y[:,1]
if __name__ == '__main__':
# load the data
data = np.loadtxt(r'data\MackeyGlass_t50.txt')
data = MinMaxScaler(feature_range=(-0.3, 0.3)).fit_transform(data)
noise = 0.1 # add n.d. noise
data += noise * np.std(data) * np.random.randn(len(data))
trainLen = 8000
testLen = 1000
dif = 46 # prediction horizon >=1
X = data[0:trainLen]
y = data[dif:trainLen+dif]
y_p = map(lambda x: 1 if x else 0, data[dif:trainLen+dif] > data[0:trainLen])
Xtest = data[trainLen:trainLen+testLen]
ytest = data[trainLen+dif:trainLen+testLen+dif]
ytest_p = map(lambda x: 1 if x else 0, data[trainLen+dif:trainLen+testLen+dif] > data[trainLen:trainLen+testLen])
resSize = 500
rho = 0.9 # spectral radius
cr = 0.05 # connectivity ratio
leaking_rate = 0.2 # leaking rate
lmbd = 1e-6 # regularization coefficient
initLen = 100
esn = ESN(resSize=resSize, rho=rho, cr=cr, leaking_rate=leaking_rate)
esn.fit(X, y, initLen=initLen, lmbd=lmbd)
esn.fit_proba(X, y_p, initLen=initLen, lmbd=lmbd, init_states=False)
y_predicted = esn.predict(Xtest)
y_predicted_p = esn.predict_proba(Xtest, init_states=False)
# compute metrics
errorLen = testLen
mse = mean_squared_error(ytest[0:errorLen], y_predicted[0:errorLen])
auc = roc_auc_score(ytest_p[0:errorLen], y_predicted_p[0:errorLen])
fpr, tpr, _ = roc_curve(ytest_p[0:errorLen], y_predicted_p[0:errorLen])
y_predicted_lab = np.zeros(len(y_predicted_p))
y_predicted_lab[ y_predicted_p >= 0.5] = 1
acc = accuracy_score(ytest_p[0:errorLen], y_predicted_lab[0:errorLen])
print("Ridge regression MSE = {}".format(mse))
print("Logistic regression AUC = {}, Accuracy = {}.".format(auc, acc))
#######################################################################
# Plot of signals
plt.figure(10).clear()
plt.plot(data[0:1000])
plt.title('A sample of data')
plt.figure(1).clear()
plt.plot( ytest, 'g', y_predicted, 'b')
plt.title('Predicting {} steps ahead. MSE = {:7.5f}'.format(dif,mse))
plt.legend(['Target signal', 'Ridge regression'], loc="upper right")
plt.figure(2).clear()
plt.plot(esn.S[0:200, 2:20])
plt.title('Some reservoir activations $\mathbf{x}(n)$')
# Plot of a ROC curve
plt.figure(3).clear()
lw = 2
plt.plot(fpr, tpr, color='darkorange',
lw=lw, label='ROC curve (area = %0.2f)' % auc)
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.show()
#######################################################################
# Esperiments with prediction horizon
difs = range(1,100)
mse_a = np.empty(len(difs))
auc_a = np.empty(len(difs))
acc_a = np.empty(len(difs))
for i,dif in enumerate(difs):
y = data[dif:trainLen+dif]
y_p = map(lambda x: 1 if x else 0, y > data[0:trainLen])
ytest = data[trainLen+dif:trainLen+testLen+dif]
ytest_p = map(lambda x: 1 if x else 0, ytest > data[trainLen:trainLen+testLen])
esn.fit(X, y, initLen=initLen, lmbd=lmbd)
esn.fit_proba(X, y_p, initLen=initLen, lmbd=lmbd, init_states=False)
y_predicted = esn.predict(Xtest)
y_predicted_p = esn.predict_proba(Xtest, init_states=False)
# compute metrics
errorLen = testLen
mse = mean_squared_error(ytest[0:errorLen], y_predicted[0:errorLen])
auc = roc_auc_score(ytest_p[0:errorLen], y_predicted_p[0:errorLen])
fpr, tpr, _ = roc_curve(ytest_p[0:errorLen], y_predicted_p[0:errorLen])
y_predicted_lab = np.zeros(len(y_predicted_p))
y_predicted_lab[ y_predicted_p >= 0.5] = 1
acc = accuracy_score(ytest_p[0:errorLen], y_predicted_lab[0:errorLen])
print("dif = {} ({} to go):".format(dif, len(difs)-i-1))
print("\tRidge regression MSE = {}".format(mse))
print("\tLogistic regression AUC = {}, Accuracy = {}.".format(auc, acc))
mse_a[i] = mse
auc_a[i] = auc
acc_a[i] = acc
plt.figure(4).clear()
plt.plot(difs, mse_a, 'b')
plt.xlim([difs[0], difs[-1]])
plt.title('MSE as a function of prediction horizon')
plt.ylabel('MSE')
plt.figure(5).clear()
plt.plot(difs, auc_a, 'r')
plt.xlim([difs[0], difs[-1]])
plt.title('AUC as a function of prediction horizon')
plt.ylabel('AUC')
plt.figure(6).clear()
plt.plot(difs, acc_a, 'g')
plt.xlim([difs[0], difs[-1]])
plt.title('Accuracy as a function of prediction horizon')
plt.ylabel('Accuracy')
plt.show()