diff --git a/DESCRIPTION b/DESCRIPTION index 53ac130..816234c 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,8 +1,8 @@ Package: mdmb Type: Package Title: Model Based Treatment of Missing Data -Version: 1.6-2 -Date: 2021-01-21 14:01:02 +Version: 1.6-4 +Date: 2021-08-25 13:07:50 Author: Alexander Robitzsch [aut, cre], Oliver Luedtke [aut] Maintainer: diff --git a/R/RcppExports.R b/R/RcppExports.R index 3fb4898..d66a30c 100644 --- a/R/RcppExports.R +++ b/R/RcppExports.R @@ -1,5 +1,5 @@ ## File Name: RcppExports.R -## File Version: 1.006002 +## File Version: 1.006004 # Generated by using Rcpp::compileAttributes() -> do not edit by hand # Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 diff --git a/R/frm_em.R b/R/frm_em.R index 4efbc7f..89afe18 100644 --- a/R/frm_em.R +++ b/R/frm_em.R @@ -1,5 +1,5 @@ ## File Name: frm_em.R -## File Version: 0.943 +## File Version: 0.949 frm_em <- function(dat, dep, ind, weights=NULL, verbose=TRUE, @@ -65,6 +65,7 @@ frm_em <- function(dat, dep, ind, weights=NULL, verbose=TRUE, beta_new <- res$coefs[[NM+1]] ll_new <- res$ll iter <- iter + 1 + #**** changes in parameters ll_change0 <- ( ll_new - ll_old ) / abs( ll_new) ll_change <- abs(ll_change0) diff --git a/R/frm_fb.R b/R/frm_fb.R index 5e4f070..01fe480 100644 --- a/R/frm_fb.R +++ b/R/frm_fb.R @@ -1,5 +1,5 @@ ## File Name: frm_fb.R -## File Version: 0.813 +## File Version: 0.821 ### Factored regression model ### Fully Bayesian estimation @@ -9,7 +9,7 @@ frm_fb <- function(dat, dep, ind, weights=NULL, verbose=TRUE, print_iter=10, use_gibbs=TRUE, aggregation=TRUE ) { CALL <- match.call() - s1 <- Sys.time() + s1 <- zz0 <- Sys.time() #*****************---------------- # adaptation of function for including new model classes @@ -128,6 +128,7 @@ zz0 <- Sys.time() ind0 <- res$ind0 model_results <- res$model_results parms_mcmc <- res$parms_mcmc + # cat("\n -- i200") ; zz1 <- Sys.time(); print(zz1-zz0) ; zz0 <- zz1 #*** imputation of missing values res <- frm_fb_sample_imputed_values( imputations_mcmc=imputations_mcmc, diff --git a/R/frm_fb_init_imputations.R b/R/frm_fb_init_imputations.R index 7a8f5cc..4fe7434 100644 --- a/R/frm_fb_init_imputations.R +++ b/R/frm_fb_init_imputations.R @@ -1,5 +1,5 @@ ## File Name: frm_fb_init_imputations.R -## File Version: 0.485 +## File Version: 0.490 frm_fb_init_imputations <- function( Nimp, model_results, burnin, iter, impute_vars, impute_vars_index, ind_miss, ind0, dv_vars, variablesMatrix, dat=NULL ) @@ -71,7 +71,8 @@ frm_fb_init_imputations <- function( Nimp, model_results, burnin, iter, impute_v cluster_index_vv <- match( idcluster_vv, unique(idcluster_vv) ) cluster_index[[vv]] <- cluster_index_vv } - } + + } # end vv iter_save_temp <- imp_save[1] saved_index <- 1 diff --git a/R/frm_fb_initial_parameters.R b/R/frm_fb_initial_parameters.R index 084218a..4c702ec 100644 --- a/R/frm_fb_initial_parameters.R +++ b/R/frm_fb_initial_parameters.R @@ -1,5 +1,5 @@ ## File Name: frm_fb_initial_parameters.R -## File Version: 0.467 +## File Version: 0.475 frm_fb_initial_parameters <- function(dat, ind0, data_init, ind_miss=NULL ) { @@ -15,6 +15,7 @@ frm_fb_initial_parameters <- function(dat, ind0, data_init, ind_miss=NULL ) parms00 <- list( NA, NA ) for (mm in 1:NM1){ + ind_mm <- ind0[[mm]] var_mm <- ind_mm$dv_vars ind_miss_mm <- ind_miss[[ var_mm ]] @@ -60,7 +61,6 @@ frm_fb_initial_parameters <- function(dat, ind0, data_init, ind_miss=NULL ) if (model_mm %in% c("linreg","oprobit")){ R_args$probit <- NULL } - if (model_mm %in% c("mlreg")){ R_args$inits_lme4 <- FALSE } @@ -117,6 +117,7 @@ frm_fb_initial_parameters <- function(dat, ind0, data_init, ind_miss=NULL ) } parms[[mm]] <- parms0 ind0[[mm]] <- ind_mm + } # end mm #--- indices for parameters to be saved @@ -133,7 +134,10 @@ frm_fb_initial_parameters <- function(dat, ind0, data_init, ind_miss=NULL ) parms_index[[mm]][[vv]] <- vec0 } } + } + + #--- output res <- list(ind0=ind0, parms=parms, parms_index=parms_index, npars=N0, model_results=model_results, dat=dat ) diff --git a/R/frm_fb_sample_imputed_values.R b/R/frm_fb_sample_imputed_values.R index db6078e..794299a 100644 --- a/R/frm_fb_sample_imputed_values.R +++ b/R/frm_fb_sample_imputed_values.R @@ -1,5 +1,5 @@ ## File Name: frm_fb_sample_imputed_values.R -## File Version: 0.759 +## File Version: 0.769 frm_fb_sample_imputed_values <- function( imputations_mcmc, model_results, @@ -34,7 +34,6 @@ frm_fb_sample_imputed_values <- function( imputations_mcmc, model_results, model_results=model_results[[ index_vv ]], ind_miss_vv=ind_miss_vv ) dat1_vv[, var_vv ] <- imp1 <- res$imp1 changed1 <- res$changed1 - do_mh <- res$do_mh NG <- res$NG gibbs_values <- res$gibbs_values @@ -100,7 +99,6 @@ frm_fb_sample_imputed_values <- function( imputations_mcmc, model_results, } # end mm } - #**** evaluation proposal in Metropolis-Hastings sampling if (do_mh){ args_mhratio <- list( like=like, like1=like1, use_sampling_level_vv=use_sampling_level_vv, @@ -125,8 +123,8 @@ frm_fb_sample_imputed_values <- function( imputations_mcmc, model_results, if ( save_values ){ imputations_mcmc$values[[var_vv]][, ind_save ] <- dat_vv[, var_vv ] } - } # end vv + #-------------------------------- #--- output res <- list( imputations_mcmc=imputations_mcmc, dat=dat) diff --git a/R/frm_fb_sample_imputed_values_eval_likelihood.R b/R/frm_fb_sample_imputed_values_eval_likelihood.R index 8ebb702..030849e 100644 --- a/R/frm_fb_sample_imputed_values_eval_likelihood.R +++ b/R/frm_fb_sample_imputed_values_eval_likelihood.R @@ -1,5 +1,5 @@ ## File Name: frm_fb_sample_imputed_values_eval_likelihood.R -## File Version: 0.42 +## File Version: 0.448 frm_fb_sample_imputed_values_eval_likelihood <- function(mm, model_results, ind0, @@ -19,6 +19,8 @@ frm_fb_sample_imputed_values_eval_likelihood <- function(mm, model_results, ind0 } else { dat_sel <- dat_vv } + + # dat_sel <- dat_sel[ ind_mm$id_variable_level_unique, ] y <- dat_sel[, ind_mm$dv_vars ] case <- dat_sel$case design_matrix <- dat_sel @@ -26,6 +28,9 @@ frm_fb_sample_imputed_values_eval_likelihood <- function(mm, model_results, ind0 if (ind_mm$R_density_fct=="frm_linreg_density"){ args$use_in_frm_fb <- TRUE } + if (ind_mm$R_density_fct=="frm_mlreg_density"){ + args$id_variable_level_unique <- ind_mm$id_variable_level_unique + } dmod <- do.call( what=ind_mm$R_density_fct, args=args ) like <- dmod$like #- adjust likelihood for cluster-level variables diff --git a/R/frm_fb_sample_imputed_values_proposal.R b/R/frm_fb_sample_imputed_values_proposal.R index 546b816..b87928d 100644 --- a/R/frm_fb_sample_imputed_values_proposal.R +++ b/R/frm_fb_sample_imputed_values_proposal.R @@ -1,5 +1,5 @@ ## File Name: frm_fb_sample_imputed_values_proposal.R -## File Version: 0.577 +## File Version: 0.582 frm_fb_sample_imputed_values_proposal <- function( var_vv, index_vv, @@ -47,11 +47,16 @@ frm_fb_sample_imputed_values_proposal <- function( var_vv, index_vv, } do_mh <- TRUE } + #*** sample new values for linear regression if ( model_vv %in% c( "mlreg" ) ){ outcome <- ind0_vv$R_args$outcome if (outcome=="probit"){ - imp <- model_results$y[ ind_miss_vv,1] + y1 <- model_results$y + if (! is.null(ind0_vv$variable_level) ){ + y1 <- y1[ ind0_vv$id_variable_level,,drop=FALSE] + } + imp <- y1[ ind_miss_vv,1] } imp1 <- stats::rnorm( N_vv, mean=imp, sd=mh_vv$sd_proposal ) if (outcome=="probit"){ diff --git a/R/frm_fb_sample_parameters.R b/R/frm_fb_sample_parameters.R index 379f187..df25f2c 100644 --- a/R/frm_fb_sample_parameters.R +++ b/R/frm_fb_sample_parameters.R @@ -1,5 +1,5 @@ ## File Name: frm_fb_sample_parameters.R -## File Version: 0.541 +## File Version: 0.543 frm_fb_sample_parameters <- function( dat, ind0, NM, eps=1E-30, iter=NULL, @@ -11,6 +11,7 @@ frm_fb_sample_parameters <- function( dat, ind0, NM, eps=1E-30, iter=NULL, NM1 <- NM + 1 for (mm in 1:NM1 ){ ind_mm <- ind0[[mm]] + # cat("\n---------------------- mm=", mm, " --------\n") #--- likelihood evaluated at old parameter mod <- model_results[[mm]] @@ -81,7 +82,9 @@ frm_fb_sample_parameters <- function( dat, ind0, NM, eps=1E-30, iter=NULL, ind_mm$sigma <- sigma0 model_results[[mm]] <- mod ind0[[mm]] <- ind_mm - } + } # end mm + + #------------ # save sampled parameters iter_save_temp <- parms_mcmc$iter_save_temp diff --git a/R/frm_linreg_density.R b/R/frm_linreg_density.R index 4833376..3a67044 100644 --- a/R/frm_linreg_density.R +++ b/R/frm_linreg_density.R @@ -1,5 +1,5 @@ ## File Name: frm_linreg_density.R -## File Version: 0.971 +## File Version: 0.973 frm_linreg_density <- function(model, y, design_matrix=NULL, case=NULL, X=NULL, offset=NULL, use_in_frm_fb=FALSE ) diff --git a/R/frm_mlreg_create_design_matrices.R b/R/frm_mlreg_create_design_matrices.R index 7efdd9a..167e82a 100644 --- a/R/frm_mlreg_create_design_matrices.R +++ b/R/frm_mlreg_create_design_matrices.R @@ -1,5 +1,5 @@ ## File Name: frm_mlreg_create_design_matrices.R -## File Version: 0.05 +## File Version: 0.07 frm_mlreg_create_design_matrices <- function(data, formula_terms ) diff --git a/R/frm_mlreg_density.R b/R/frm_mlreg_density.R index d3258e9..e89022e 100644 --- a/R/frm_mlreg_density.R +++ b/R/frm_mlreg_density.R @@ -1,12 +1,15 @@ ## File Name: frm_mlreg_density.R -## File Version: 0.15 +## File Version: 0.167 -frm_mlreg_density <- function( model, y, case, design_matrix) +frm_mlreg_density <- function( model, y, case, design_matrix, id_variable_level_unique=NULL) { outcome <- model$outcome data <- design_matrix formula_terms <- model$formula_terms + if ( ! is.null(id_variable_level_unique) ){ + data <- data[ id_variable_level_unique, ] + } res <- frm_mlreg_create_design_matrices(data=data, formula_terms=formula_terms ) y <- res$y X <- res$X @@ -20,7 +23,6 @@ frm_mlreg_density <- function( model, y, case, design_matrix) idcluster_list <- model$idcluster_list outcome <- model$outcome K <- model$K - #- evaluate densities ypred <- miceadds::miceadds_rcpp_ml_mcmc_predict_fixed_random( X=X, beta=beta, Z_list=Z_list, u_list=u_list, idcluster_list=idcluster_list, NR=NR ) diff --git a/README.md b/README.md index b05a6a0..6fc9376 100644 --- a/README.md +++ b/README.md @@ -22,9 +22,9 @@ The CRAN version can be installed from within R using: utils::install.packages("mdmb") ``` -#### GitHub version `mdmb` 1.6-2 (2021-01-21) +#### GitHub version `mdmb` 1.6-4 (2021-08-25) -[![](https://img.shields.io/badge/github%20version-1.6--2-orange.svg)](https://github.com/alexanderrobitzsch/mdmb) +[![](https://img.shields.io/badge/github%20version-1.6--4-orange.svg)](https://github.com/alexanderrobitzsch/mdmb) The version hosted [here](https://github.com/alexanderrobitzsch/mdmb) is the development version of `mdmb`. The GitHub version can be installed using `devtools` as: diff --git a/docs/404.html b/docs/404.html index b45fee8..f5ad302 100644 --- a/docs/404.html +++ b/docs/404.html @@ -71,7 +71,7 @@
diff --git a/docs/authors.html b/docs/authors.html index cfd50a6..de70b9f 100644 --- a/docs/authors.html +++ b/docs/authors.html @@ -71,7 +71,7 @@ @@ -111,12 +111,12 @@inst/CITATION
- Robitzsch, A., & Luedtke, O. (2021). mdmb: Model based treatment of missing data. R package version 1.6-2. https://CRAN.R-project.org/package=mdmb
+Robitzsch, A., & Luedtke, O. (2021). mdmb: Model based treatment of missing data. R package version 1.6-4. https://CRAN.R-project.org/package=mdmb
@Manual{, title = {mdmb: Model Based Treatment of Missing Data}, author = {Alexander Robitzsch and Oliver Luedtke}, year = {2021}, - note = {R package version 1.6-2}, + note = {R package version 1.6-4}, url = {https://CRAN.R-project.org/package=mdmb}, }diff --git a/docs/index.html b/docs/index.html index 2fe6f1e..7724bec 100644 --- a/docs/index.html +++ b/docs/index.html @@ -42,7 +42,7 @@ diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml index b4e9b86..16664c3 100644 --- a/docs/pkgdown.yml +++ b/docs/pkgdown.yml @@ -2,5 +2,5 @@ pandoc: 1.13.1 pkgdown: 1.5.1 pkgdown_sha: ~ articles: [] -last_built: 2021-01-21T13:07Z +last_built: 2021-08-25T11:14Z diff --git a/docs/reference/frm.html b/docs/reference/frm.html index b70fba0..a97b62b 100644 --- a/docs/reference/frm.html +++ b/docs/reference/frm.html @@ -435,13 +435,13 @@
Luedtke, O., Robitzsch, A., & West, S. (2020a). Analysis of interactions and nonlinear -effects with missing data: A factored regression modeling approach using maximum -likelihood estimation. Multivariate Behavioral Research, 55(3), 361-381. +
Luedtke, O., Robitzsch, A., & West, S. (2020a). Analysis of interactions and nonlinear +effects with missing data: A factored regression modeling approach using maximum +likelihood estimation. Multivariate Behavioral Research, 55(3), 361-381. doi: 10.1080/00273171.2019.1640104
-Luedtke, O., Robitzsch, A., & West, S. (2020b). Regression models involving nonlinear -effects with missing data: A sequential modeling approach using Bayesian estimation. -Psychological Methods, 25(2), 157-181. +
Luedtke, O., Robitzsch, A., & West, S. (2020b). Regression models involving nonlinear +effects with missing data: A sequential modeling approach using Bayesian estimation. +Psychological Methods, 25(2), 157-181. doi: 10.1037/met0000233
Zhang, Q., & Wang, L. (2017). Moderation analysis with missing data in the predictors. Psychological Methods, 22(4), 649-666. diff --git a/inst/NEWS b/inst/NEWS index 8d1bfaa..95c2812 100644 --- a/inst/NEWS +++ b/inst/NEWS @@ -30,10 +30,11 @@ CHANGELOG mdmb --------------------------------------------------------------------- -VERSIONS mdmb 1.6 | 2021-01-21 | Last: mdmb 1.6-2 +VERSIONS mdmb 1.6 | 2021-08-25 | Last: mdmb 1.6-4 --------------------------------------------------------------------- -xxxx * +FIXED * fixed a bug in frm_fb() for sampling of variables at + higher levels with probit model (thanks to Simon Grund) DATA * included/modified datasets: --- diff --git a/man/frm.Rd b/man/frm.Rd index 982fd7d..b6cc200 100644 --- a/man/frm.Rd +++ b/man/frm.Rd @@ -1,5 +1,5 @@ %% File Name: frm.Rd -%% File Version: 0.833 +%% File Version: 0.834 \name{frm} \alias{frm} @@ -264,14 +264,14 @@ with mixed measurement scales using a sequence of generalised linear models. \emph{Computational Statistics & Data Analysis, 95}(24), 24-38. \doi{10.1016/j.csda.2015.08.004} -Luedtke, O., Robitzsch, A., & West, S. (2020a). Analysis of interactions and nonlinear -effects with missing data: A factored regression modeling approach using maximum -likelihood estimation. \emph{Multivariate Behavioral Research, 55}(3), 361-381. +Luedtke, O., Robitzsch, A., & West, S. (2020a). Analysis of interactions and nonlinear +effects with missing data: A factored regression modeling approach using maximum +likelihood estimation. \emph{Multivariate Behavioral Research, 55}(3), 361-381. \doi{10.1080/00273171.2019.1640104} -Luedtke, O., Robitzsch, A., & West, S. (2020b). Regression models involving nonlinear -effects with missing data: A sequential modeling approach using Bayesian estimation. -\emph{Psychological Methods, 25}(2), 157-181. +Luedtke, O., Robitzsch, A., & West, S. (2020b). Regression models involving nonlinear +effects with missing data: A sequential modeling approach using Bayesian estimation. +\emph{Psychological Methods, 25}(2), 157-181. \doi{10.1037/met0000233} Zhang, Q., & Wang, L. (2017). Moderation analysis with missing data in the predictors. diff --git a/src/RcppExports.cpp b/src/RcppExports.cpp index 5fb1933..1887b6c 100644 --- a/src/RcppExports.cpp +++ b/src/RcppExports.cpp @@ -1,5 +1,5 @@ //// File Name: RcppExports.cpp -//// File Version: 1.006002 +//// File Version: 1.006004 // Generated by using Rcpp::compileAttributes() -> do not edit by hand // Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393