forked from eriklindernoren/PyTorch-YOLOv3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
181 lines (150 loc) · 5.16 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from __future__ import division
import argparse
import timeit
import torch.optim as optim
from torch.utils.data import DataLoader
from models import *
from utils.datasets import *
from utils.parse_config import *
from utils.utils import *
parser = argparse.ArgumentParser()
parser.add_argument("--num_epochs", type=int, default=30, help="number of num_epochs")
parser.add_argument(
"--model_config_path",
type=str,
default="config/yolov3.cfg",
help="path to model config file",
)
parser.add_argument(
"--data_config_path",
type=str,
default="config/coco.data",
help="path to data config file",
)
parser.add_argument(
"--weights_path",
type=str,
default="weights/yolov3.weights",
help="path to weights file",
)
parser.add_argument(
"--freeze_point", type=int, default=-1, help="-1 to load all weights"
)
parser.add_argument(
"--n_cpu",
type=int,
default=0,
help="number of cpu threads to use during batch generation",
)
parser.add_argument("--avg_interval", type=int, default=1)
parser.add_argument("--checkpoint_interval", type=int, default=1)
parser.add_argument("--checkpoint_dir", type=str, default="checkpoints")
parser.add_argument(
"--use_cuda", action="store_true", help="whether to use cuda if available"
)
parser.add_argument("--shuffle", action="store_true")
opt = parser.parse_args()
for x in opt.__dict__:
print("%25s: %s" % (x, opt.__dict__[x]))
print("-" * 80)
cuda = torch.cuda.is_available() and opt.use_cuda
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
os.makedirs("checkpoints", exist_ok=True)
# Get data configuration
data_config = parse_data_config(opt.data_config_path)
train_path = data_config["train"]
names = load_names(data_config["names"])
for x, y in data_config.items():
print("%25s: %s" % (x, y))
print("-" * 80)
# Model loading
model = Darknet(config_path=opt.model_config_path, freeze_point=opt.freeze_point)
model.load_weights(opt.weights_path, upto=model.freeze_point)
model.freeze_layers()
model.init_layers()
model.cuda()
model.train()
model.debug()
for x, y in model.hyperparams.items():
print("%25s: %s" % (x, y))
print("-" * 80)
print("Model loading done")
# Get hyper parameters
learning_rate = float(model.hyperparams["learning_rate"])
momentum = float(model.hyperparams["momentum"])
decay = float(model.hyperparams["decay"])
burn_in = int(model.hyperparams["burn_in"])
batch_size = int(model.hyperparams["batch"])
subdivisions = int(model.hyperparams["subdivisions"])
img_size = int(model.hyperparams["height"])
sub_batch_size = batch_size // subdivisions
assert batch_size % subdivisions == 0, "Wrong bs/sd config"
# Get dataloader
dataset = ListDataset(train_path, img_size=img_size)
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, shuffle=opt.shuffle, num_workers=opt.n_cpu
)
print("Dataset setup done")
# Setup optimizer TODO
learnable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = optim.SGD(
learnable_params,
lr=learning_rate,
momentum=momentum,
dampening=0,
weight_decay=decay,
)
# stats-keeping
avg_losses = {x: 0 for x in model.loss_names}
avg_total = 0
# Perform training
print("Starting training")
for epoch in range(opt.num_epochs):
for batch_i, (_, imgs, targets) in enumerate(dataloader):
start = timeit.default_timer()
imgs = Variable(imgs.type(Tensor))
targets = Variable(targets.type(Tensor), requires_grad=False)
optimizer.zero_grad()
loss = 0
for i in range(subdivisions):
sub_imgs = imgs[i * sub_batch_size : (i + 1) * sub_batch_size]
sub_targets = targets[i * sub_batch_size : (i + 1) * sub_batch_size]
loss += model(sub_imgs, sub_targets)
loss /= subdivisions
loss.backward()
optimizer.step()
avg_total += loss.item()
for x in model.loss_names:
avg_losses[x] += model.losses[x]
if batch_i % opt.avg_interval == 0:
print(
(
"[Epoch %2d/%2d, Batch %5d/%5d] "
+ "[Avg Losses: total %f, x %f, y %f, w %f, h %f, conf %f, cls %f, recall: %.5f]"
)
% (
epoch,
opt.num_epochs,
batch_i,
len(dataloader),
avg_total / opt.avg_interval,
*[avg_losses[x] / opt.avg_interval for x in model.loss_names],
)
)
avg_losses = {x: 0 for x in model.loss_names}
avg_total = 0
# print(
# ("+ [Epoch %2d/%2d, Batch %5d/%5d] " +
# "[Losses: total %f, x %f, y %f, w %f, h %f, conf %f, cls %f, recall: %.5f] " +
# "[Took %2.6f]"
# ) % (
# epoch, opt.num_epochs, batch_i, len(dataloader),
# loss.item(), *[model.losses[x] for x in model.loss_names],
# timeit.default_timer() - start
# )
# )
model.seen += imgs.size(0)
# TODO: validate model
if epoch % opt.checkpoint_interval == 0:
print("Saving weights for [epoch %2d]" % epoch)
model.save_weights("%s/%d.weights" % (opt.checkpoint_dir, epoch))