-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathgithub_prequential_test.py
39 lines (29 loc) · 1.37 KB
/
github_prequential_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
"""
The Tornado Framework
By Ali Pesaranghader
University of Ottawa, Ontario, Canada
E-mail: apesaran -at- uottawa -dot- ca / alipsgh -at- gmail -dot- com
"""
from data_structures.attribute_scheme import AttributeScheme
from classifier.__init__ import *
from drift_detection.__init__ import *
from filters.project_creator import Project
from streams.readers.arff_reader import ARFFReader
from tasks.__init__ import *
# 1. Creating a project
project = Project("projects/single", "sine1")
# 2. Loading an arff file
labels, attributes, stream_records = ARFFReader.read("data_streams/sine1_w_50_n_0.1/sine1_w_50_n_0.1_101.arff")
attributes_scheme = AttributeScheme.get_scheme(attributes)
# 3. Initializing a Learner
learner = NaiveBayes(labels, attributes_scheme['nominal'])
# 4. Initializing a drift detector
detector = FHDDM(n=100)
actual_drift_points = [20000, 40000, 60000, 80000]
drift_acceptance_interval = 250
# 5. Creating a Prequential Evaluation Process
prequential = PrequentialDriftEvaluator(learner, detector, attributes, attributes_scheme,
actual_drift_points, drift_acceptance_interval, project)
# prequential = PrequentialDrift(learner, detector, attributes, attributes_scheme, project)
# prequential = Prequential(learner, attributes, attributes_scheme, project)
prequential.run(stream_records, 1)