-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy patharchs.py
350 lines (303 loc) · 12.7 KB
/
archs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# archs.py
import torch
import math
import numpy as np
from torch import nn
import torch.nn.functional as F
from torchvision import models
from modules import GeneralizedMeanPooling
import os.path as osp
import sys
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet_RMAC(nn.Module):
def __init__(self, block, layers, fc_out, norm_features=True, aggregation='gem',
dropout_p=None, gemp=3, without_fc=False):
self.inplanes = 64
self.norm_features = norm_features
self.aggregation = aggregation
self.without_fc = without_fc
self.out_features = fc_out
super(ResNet_RMAC, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
# Aggregation layer
if aggregation == None:
self.adpool = nn.AvgPool2d(kernel_size=7, stride=1, padding=0)
elif aggregation == 'max':
self.adpool = nn.AdaptiveMaxPool2d(output_size=1)
elif aggregation == 'avg':
self.adpool = nn.AdaptiveAvgPool2d(output_size=1)
elif aggregation == 'gem':
self.adpool = GeneralizedMeanPooling(norm_type=gemp, output_size=1)
self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None
# Final FC layer
self.fc = nn.Linear(512 * block.expansion, fc_out) if not self.without_fc else None
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def features(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def forward(self, x):
# Extract convolutional features
x = self.features(x)
# Aggregate features into a 1D representation
x = self.adpool(x)
if self.dropout is not None:
x = self.dropout(x)
x.squeeze_()
# Projection (if defined)
if not self.without_fc:
x = self.fc(x)
# L2-normalize the representation
x = l2_normalize(x)
return x
def l2_normalize(x, axis=-1):
x = F.normalize(x, p=2, dim=axis)
return x
def resnet101_rmac(out_dim=2048, dropout_p=None, weights=None, **kwargs):
"""Constructs a ResNet-101 model.
"""
model = ResNet_RMAC(Bottleneck, [3, 4, 23, 3], dropout_p=dropout_p, fc_out=out_dim, **kwargs)
if weights:
try:
if torch.cuda.device_count()>0:
weight_dict = torch.load(weights)['state_dict']
else:
weight_dict = torch.load(weights, map_location={'cuda:0':'cpu'})['state_dict']
except OSError as e:
print ('ERROR: Weights {} not found. Please follow the instructions to download models.'.format(weights))
sys.exit()
model.load_state_dict(weight_dict)
return model
def resnet50_rmac(out_dim=2048, dropout_p=None, weights=None, **kwargs):
"""Constructs a ResNet-50 model.
"""
model = ResNet_RMAC(Bottleneck, [3, 4, 6, 3], dropout_p=dropout_p, fc_out=out_dim, **kwargs)
if weights:
try:
if torch.cuda.device_count()>0:
weight_dict = torch.load(weights)['state_dict']
else:
weight_dict = torch.load(weights, map_location={'cuda:0':'cpu'})['state_dict']
except OSError as e:
print ('ERROR: Weights {} not found. Please follow the instructions to download models.'.format(weights))
sys.exit()
model.load_state_dict(weight_dict)
return model
def resnet18_rmac(out_dim=512, dropout_p=None, weights=None, **kwargs):
"""Constructs a ResNet-50 model.
"""
model = ResNet_RMAC(BasicBlock, [2, 2, 2, 2], dropout_p=dropout_p, fc_out=out_dim, **kwargs)
if weights:
try:
if torch.cuda.device_count()>0:
weight_dict = torch.load(weights)['state_dict']
else:
weight_dict = torch.load(weights, map_location={'cuda:0':'cpu'})['state_dict']
except OSError as e:
print ('ERROR: Weights {} not found. Please follow the instructions to download models.'.format(weights))
sys.exit()
model.load_state_dict(weight_dict)
return model
class AlexNet(nn.Module):
def __init__(self, num_classes=1000, training=True):
super(AlexNet, self).__init__()
self.training = training
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
if self.training:
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
else:
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), 256 * 6 * 6)
x = self.classifier(x)
if not self.training:
x = l2_normalize(x)
return x
class AlexNet_RMAC(nn.Module):
def __init__(self, aggregation='gem', gemp=3, norm_features=True, showforward=False):
super(AlexNet_RMAC, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
)
if aggregation == 'gem':
self.features.add_module('12', GeneralizedMeanPooling(norm_type=gemp, output_size=1))
else:
self.features.add_module('12', nn.AdaptiveAvgPool2d(output_size=1))
self.norm_features = norm_features
self.showforward = showforward
def forward(self, x):
if self.showforward: print('Input size of model.features : '+str(x.shape)+'\n')
x = self.features(x)
x = x.view(x.shape[0], x.shape[1])
if self.norm_features:
x = l2_normalize(x)
if self.showforward: print('Output size of model.features : '+str(x.shape)+'\n')
return x
def alexnet_fc(out_dim=1000, train=True, weights=None, **kwargs):
model = AlexNet(num_classes=out_dim, training=train)
model.out_features = out_dim
if weights:
if torch.cuda.device_count()>0:
weight_dict = torch.load(weights)
else:
weight_dict = torch.load(weights, map_location={'cuda:0':'cpu'})
if not train:
del weight_dict['classifier.6.weight']
del weight_dict['classifier.6.bias']
model.load_state_dict(weight_dict)
return model
def alexnet_rmac(aggregation='gem',weights=None, **kwargs):
model = AlexNet_RMAC(aggregation=aggregation)
model.out_features = 256
if weights:
if torch.cuda.device_count()>0:
weight_dict = torch.load(weights)
else:
weight_dict = torch.load(weights, map_location={'cuda:0':'cpu'})
del weight_dict['classifier.1.weight']; del weight_dict['classifier.1.bias']
del weight_dict['classifier.4.weight']; del weight_dict['classifier.4.bias']
del weight_dict['classifier.6.weight']; del weight_dict['classifier.6.bias']
model.load_state_dict(weight_dict)
return model
# models to be called
path_models = 'data/models'
resnet50_cls = lambda : resnet50_rmac(out_dim=586, weights=osp.join(path_models, 'resnet50-cls-lm.pt'))
resnet18_rank_DA = lambda : resnet18_rmac(out_dim=512, weights=osp.join(path_models, 'resnet18-rnk-lm-da.pt'))
resnet50_rank = lambda : resnet50_rmac(out_dim=2048, weights=osp.join(path_models, 'resnet50-rnk-lm.pt'))
resnet50_rank_DA = lambda : resnet50_rmac(out_dim=2048, weights=osp.join(path_models, 'resnet50-rnk-lm-da.pt'))
# weightless architectures to be called
alexnet_imagenet = lambda: alexnet_fc(out_dim=1000, train=True)
alexnet_imagenet_fc7 = lambda: alexnet_fc(out_dim=4096, train=False)
alexnet_lm = lambda: alexnet_fc(out_dim=586, train=True)
alexnet_GeM = lambda: alexnet_rmac()
resnet18 = lambda : resnet18_rmac(out_dim=586, aggregation=None)
resnet18_GeM = lambda : resnet18_rmac(out_dim=512)