-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmap_barcodes.py
executable file
·164 lines (125 loc) · 5.48 KB
/
map_barcodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python
'''
Demultiplex reads by mapping the barcode read to the sample names from a barcode mapping
file.
Given a tab-separated barcode mapping file like
donor1_day5 ACGT
the first read mapping to that barcode, say
@OURSEQ:lolapalooza1234#ACGT/1
AACCGGTT
+
abcdefgh
becomes output like
@sample=donor1_day5;1
AACCGGTT
+whatever
abcdefgh
where the ;1 means it's the first read that mapped to donor1_day5.
'''
import usearch_python.primer, util
import sys, argparse, string, itertools, re
from Bio import SeqIO
def barcode_file_to_dictionary(barcode_lines):
'''parse a barcode mapping file into a dictionary {barcode: sample}'''
barcode_map = {}
for i, line in enumerate(barcode_lines):
fields = line.split()
if len(fields) != 2:
raise RuntimeError("every line in barcode file should have two fields; found %d in line %d" %(len(fields), i))
sample, barcode = fields
barcode_map[barcode] = sample
return barcode_map
def best_barcode_match(known_barcodes, barcode):
'''
Find the best match between a known barcode a list of known barcodes
Parameters
known_barcodes : sequence of iterator of sequences
list of known barcodes
barcode : string
the barcode read to be matched against the known barcodes
Returns
min_mismatches : int
number of mismatches in the best alignment
best_known_barcode : string
known barcode that aligned best
'''
# get a list of pairs (n_mismatches, known_barcode)
#n_mismatches = lambda known_barcode: util.mismatches(barcode, known_barcode, 1)[1]
n_mismatches = lambda known_barcode: usearch_python.primer.MatchPrefix(barcode, known_barcode)
alignments = [(n_mismatches(known_barcode), known_barcode) for known_barcode in known_barcodes]
# find the alignment that has the minimum number of mismatches
min_mismatches, best_known_barcode = min(alignments, key=lambda x: x[0])
return min_mismatches, best_known_barcode
def parse_barcode(record):
'''
Extract the barcode read and direction from a BioPython SeqRecord
Parameters
record : SeqRecord
fastq record
returns : tuple
(barcode read, read direction), where direction is either '1' or '2'
'''
# match, e.g. @any_set_of_chars#ACGT/1 -> ACGT
m = re.match(".*#([ACGTN]+)/(\d)$", record.id)
if m is None:
raise RuntimeError("fastq id did not match expected format: %s" %(record.id))
# pull out the read and direction from the match
barcode_read = m.group(1)
read_direction = m.group(2)
if read_direction not in ['1', '2']:
raise RuntimeError('read direction not 1 or 2: %s' %(record.id))
return (barcode_read, read_direction)
def renamed_fastq_records(fastq, barcode_map, max_barcode_diffs):
'''
Rename the read IDs in a fastq file with the corresponding sample name. Get the barcode
read right from the ID line, look it up in the barcode map, and pick the best match.
Parameters
fastq : filename or filehandle
input
barcode_map : dictionary
entries are {barcode: sample_name}
max_barcode_diffs : int
maximum number of mismatches between a barcode read and known barcode before throwing
out that read
yields : SeqRecord
fastq records
'''
# keep track of the computations where we align the barcode read to the known barcodes
barcode_read_to_sample = {}
sample_counts = {}
for record in SeqIO.parse(fastq, 'fastq'):
# look for the barcode from the read ID line
barcode_read, read_direction = parse_barcode(record)
if barcode_read in barcode_read_to_sample:
sample = barcode_read_to_sample[barcode_read]
sample_counts[sample] += 1
else:
# try aligning to every known barcode
n_mismatches, best_known_barcode = best_barcode_match(barcode_map.keys(), barcode_read)
# if the match was good, assign that barcode read to the sample that the best read
# matches
if n_mismatches > max_barcode_diffs:
continue
else:
# get the name for this sample; record which sample we mapped this barcode
# read to
sample = barcode_map[best_known_barcode]
barcode_read_to_sample[barcode_read] = sample
sample_counts[sample] = 1
record.id = "sample=%s;%d/%s" %(sample, sample_counts[sample], read_direction)
# expunge other parts of title
record.description = ''
yield record
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Demultiplex fastq entries by barcode', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('fastq', help='input fastq file')
parser.add_argument('barcode', help='barcode mapping file')
parser.add_argument('-m', '--max_barcode_diffs', default=0, type=int, help='maximum number of nucleotide mismatches in the barcode')
parser.add_argument('--output', '-o', default=sys.stdout, type=argparse.FileType('w'), help='output fastq')
args = parser.parse_args()
# parse the barcode mapping file
with open(args.barcode, 'r') as f:
barcode_map = barcode_file_to_dictionary(f)
# get a set of reads
for record in renamed_fastq_records(args.fastq, barcode_map, args.max_barcode_diffs):
SeqIO.write(record, args.output, 'fastq')