-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathkPCA.m
51 lines (42 loc) · 1.4 KB
/
kPCA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
% X: data matrix, each row is one observation, each column is one feature
% d: reduced dimension
% type: type of kernel, can be 'simple', 'poly', or 'gaussian'
% para: parameter for computing the 'poly' and 'gaussian' kernel,
% for 'simple' it will be ignored
% Y: dimensionanlity-reduced data
% eigVector: eigen-vector, will later be used for pre-image
% reconstruction
% Copyright by Quan Wang, 2011/05/10
% Please cite: Quan Wang. Kernel Principal Component Analysis and its
% Applications in Face Recognition and Active Shape Models.
% arXiv:1207.3538 [cs.CV], 2012.
function [Y, eigVector, eigValue]=kPCA(X,d,type,para)
%% check input
if ( strcmp(type,'simple') || strcmp(type,'poly') || ...
strcmp(type,'gaussian') ) == 0
Y=[];
eigVector=[];
fprintf(['\nError: Kernel type ' type ' is not supported. \n']);
return;
end
N=size(X,1);
%% kernel PCA
K0=kernel(X,type,para);
oneN=ones(N,N)/N;
K=K0-oneN*K0-K0*oneN+oneN*K0*oneN;
%% eigenvalue analysis
%[V,D]=eig(K/N);
[V,D]=svd(K/N,0);
r=rank(D);
D=D(1:r,1:r);
V=V(:,1:r);
eigValue=diag(D);
[~,IX]=sort(eigValue,'descend');
eigVector=V(:,IX);
eigValue=eigValue(IX);
%% normailization
norm_eigVector=sqrt(sum(eigVector.^2));
eigVector=eigVector./repmat(norm_eigVector,size(eigVector,1),1);
%% dimensionality reduction
eigVector=eigVector(:,1:d);
Y=K0*eigVector;