-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInterFC_Slow2.m
270 lines (221 loc) · 9.43 KB
/
InterFC_Slow2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
clear variables; close all; clc;
%% =========== Internetwork connectivity (inter-FC) analysis =========== %%
% Performs INC among FC networks
% Select IC of interest. Vector 1xn with n as the index of the ICs of
% interest 1:20; for all networks.
% Written by: M.E. Archila-Meléndez and modified by S. Küchenhoff and
% A.L. Ruiz-Rizzo
%% General settings =======================================================
saveVars = 0; % 0 to test and 1 to save .mat .xls and .pngs
subjectToExclude = 62; % It has to be 1 more than the actual file name/
% number (e.g. Subj003 subjectToExclude = 4);
% "62" is a mock
timePoints = 595; % Number of fMRI time points (rows in files)
dirData = ['/Users/lmuresearchfellowship/Documents/Adriana'...
'/LMU_Psychology/Projects/Svenja/Slow2_Young/']; % where the data...
% (dr_stage_1) are stored.
% put the full path if this script is not in
% the same one where the data are stored
Frequency = 'Slow2';
%% Settings application ===================================================
% Networks of interest
intNets = [51, 61, 40, 11, 2, 10, 8]; % Vector
NetNames = {'COn', 'RFPn' 'Vis-39', 'Vis-46',...
'Vis-59', 'Vis-64', 'Vis-67'}; % Names
%% Load the data set (time courses) of subjects ===========================
cd Slow2_Young
D=dir(fullfile('*.txt'));
ii=1;
subjCON = {};
for i=(1:length(D))
if i==subjectToExclude
disp (['**EXCLUDED**:dr_stage1_subject000', num2str(i-1),'.txt'])
else
if(i<11)
subjCON{1,ii}= load([dirData, filesep,...
'dr_stage1_subject0000',...
num2str(i-1),'.txt']);
disp (['Included: ' 'dr_stage1_subject0000',...
num2str(i-1),'.txt'])
else
(i>=11 && i<=99);
subjCON{1,ii} = load([dirData, filesep,...
'dr_stage1_subject000',...
num2str(i-1),'.txt']);
disp (['Included: ' 'dr_stage1_subject0000',...
num2str(i-1),'.txt'])
end
ii = ii + 1;
end
end
clear ii
clear i % subjCon is now the complete dataset
%% Extraction of ICs of interest ==========================================
SelectSubData = zeros(timePoints,length(NetNames));
% rows: number of time points or volumes;
% colums: number of ICs selected
for i=1:numel(subjCON)
currSubjData = subjCON{1,i};
SelectSubData = currSubjData(:,intNets(1,:));
subjCON{1,i} = SelectSubData;
end
clear i currSubjData
%% Compute the correlation between ICs for subjCON subject by subject =====
for i = 1:numel(subjCON) % subjects
RCON{i} = corr(subjCON{i}); % correlations within each subject's file
end
% r-to-Z transform with Fisher for all ICs for each data file
for i = 1:numel(subjCON)
for j = 1:numel(intNets)
for k = 1:numel(intNets)
fisherZCON{i}(j,k) = 0.5 * (log((1 + RCON{i}(j,k)) /...
(1 - RCON{i}(j,k)))); % Fisher Z transformation formula
end
end
end
% The next step will concatenate all z-transformation correlation...
% ...matrices per subject in one file. But we can use the index to...
% ...create a vector with the Subjects Numbers to later name the per...
% ...subject result table
%% Concatenate all z-transformed correlation matrices =====================
SubjNum = [];
FullFisherZCON = [];
for i = 1:size(fisherZCON, 2) % returns the number of columns
FullFisherZCON = cat (3, FullFisherZCON, fisherZCON{1,i});
SubjNum = [SubjNum; i];
end
%% Extract Z values =======================================================
% E.g., if you want to use them outside of Matlab,
% select the specific network numbers that you want the Z-value for
% Write manually the heading you want (content of cells)
Names_ExtractZval = {'RFP and CO','RFP and 39', 'RFP and 46',...
'RFP and 59', 'RFP and 64', 'RFP and 67'};
ExtractZval = [];
for i = 1:size(fisherZCON,2)
tempZval(1,1) = FullFisherZCON(2,1,i);
tempZval(1,2) = FullFisherZCON(2,3,i);
tempZval(1,3) = FullFisherZCON(2,4,i);
tempZval(1,4) = FullFisherZCON(2,5,i);
tempZval(1,5) = FullFisherZCON(2,6,i);
tempZval(1,6) = FullFisherZCON(2,7,i);
tempZval = num2cell(tempZval);
Names_ExtractZval = [Names_ExtractZval; tempZval];
ExtractZval = cat (1,ExtractZval, tempZval);
clear tempZval
end
% Write manually the heading you want (content of cells)
Names_ExtractZval2 = {'CO and 39', 'CO and 46', 'CO and 59',...
'CO and 64', 'CO and 67'};
ExtractZval2 = [];
for i = 1:size(fisherZCON,2)
tempZval(1,1) = FullFisherZCON(1,3,i);
tempZval(1,2) = FullFisherZCON(1,4,i);
tempZval(1,3) = FullFisherZCON(1,5,i);
tempZval(1,4) = FullFisherZCON(1,6,i);
tempZval(1,5) = FullFisherZCON(1,7,i);
tempZval = num2cell(tempZval);
Names_ExtractZval2 = [Names_ExtractZval2; tempZval];
ExtractZval2 = cat (1,ExtractZval2, tempZval);
clear tempZval
end
Names_ExtractZval = [Names_ExtractZval, Names_ExtractZval2];
ExtractZval = [ExtractZval, ExtractZval2];
% Add the subject numbers to the matrix
xm = 0;
SubjNum = [xm; SubjNum];
SubjNum = num2cell (SubjNum);
Names_ExtractZval = [SubjNum, Names_ExtractZval];
clear i k j
%% Significance section ===================================================
valid = zeros(numel(intNets));
% One-sample t-test for NON-independent samples
for x = 1:length(FullFisherZCON(:,1,1))
for y = 1:length(FullFisherZCON(1,:,1))
[h(x,y),pval(x,y),ci,stats]=ttest(FullFisherZCON(x,y,:));
ciAll(x,y,1) = ci(:,:,1);
ciAll(x,y,2) = ci(:,:,2);
statsAll.tstat(x,y) = stats.tstat;
statsAll.df(x,y) = stats.df;
statsAll.sd(x,y) = stats.sd;
if (x < y)
valid(y,x) = valid(y,x) +1; % create lower diagonal matrix
end
end
end
Zavg = mean(FullFisherZCON,3);
clear x y
% Significance Output
ValidVec = find(valid==1); % only in the lower diagonal for all...
% ... 3 pVals
% Multiple comparison correction with FDR=false discovery rate for INC
q = mafdr(pval(valid==1),'BHFDR','true');
pval2 = pval(ValidVec);
Rfdr = zeros(numel(intNets));
Rfdr(ValidVec(pval2 < 0.05 & q < 0.05)) = 1; % extracting the...
% ...significant averaged INC
[MarkI,MarkJ] = ind2sub(size(Rfdr),find(Rfdr==1)); % For drawing the...
% ...stars (*) in each cell
%% To display and save results ============================================
% Figure for average group matrix
figure('Colormap',redbluecmap)
Zavg(Zavg == Inf) = 0;
imagesc(tril(Zavg)); colorbar;
% title([ 'INC for ' Frequency...
% ' (pval < 0.05 and q < 0.05)']);
caxis ([-1, 1]);
c = colorbar;
c.Label.String = 'z values';
text(MarkJ,MarkI,{'*'},'fontsize',12); % For drawing the stars (*)...
% ...in each cell
set(gca,'Xtick',(1:numel(intNets)))
set(gca,'Ytick',(1:numel(intNets)))
set(gca, 'xticklabel', NetNames, 'FontSize', 14);
set(gca, 'yticklabel', NetNames, 'FontSize', 14);
if saveVars == 1
saveas(gcf,[Frequency '_INC_Zvals_' num2str(length (intNets))...
'_Nets_for_' date '.png']);
end
%% To have have headings of networks for the result tables ============
% Create a vertical vector of the networks
vertintNets = intNets';
Networksvert = [xm; vertintNets];
% Put the networks above and on the left of the result matrices
Names_Zavg = [intNets; Zavg];
Names_Zavg = [Networksvert, Names_Zavg];
Names_pval = [intNets; pval];
Names_pval = [Networksvert, Names_pval];
Names_statsAll.df = [intNets; statsAll.df];
Names_statsAll.df = [Networksvert, Names_statsAll.df];
Names_statsAll.sd = [intNets; statsAll.sd];
Names_statsAll.sd = [Networksvert, Names_statsAll.sd];
%% To extract result values ===========================================
results{1} = Names_Zavg;
results{2} = Names_pval;
pvalTemp = zeros(size(pval));
pvalTemp(ValidVec(pval2 < 0.05 & q < 0.05)) = ...
-log10(pval(ValidVec(pval2 < 0.05 & q < 0.05)));
results{3} = pvalTemp;
results{4} = Names_statsAll;
results{5} = Names_ExtractZval;
%% To save result values ==============================================
if saveVars == 1
save (['resultsINC_' date]);
xlswrite(([Frequency '_INC_for_' num2str(length (intNets))...
'_Nets_' 'MeanZval_' date '.xlsx']),results{1})
xlswrite(([Frequency '_INC_for_' num2str(length (intNets))...
'_Nets_' 'pValUncorr_' date '.xlsx']),results{2})
xlswrite(([Frequency '_INC_for_' num2str(length (intNets))...
'_Nets_' 'Log10_pVal_Correct_' date '.xlsx']),results{3})
xlswrite(([Frequency '_INC_for_' num2str(length (intNets))...
'_Nets_' 'ttest_df_' date '.xlsx']),results{4}.df)
xlswrite(([Frequency '_INC_for_' num2str(length (intNets))...
'_Nets_' 'ttest_SD_' date '.xlsx']),results{4}.sd)
% Convert cell to a table and use first row as variable names
T = cell2table(results{5}(2:end,2:end),'VariableNames',...
results{5}(1,2:end));
% Write the table to a CSV file
writetable(T, [Frequency '_INC_for_' num2str(length (intNets))...
'_Nets_' 'Z_vals_' date '.csv'])
end
saveVars;
disp '********** Finished **********'