forked from aryanc403/Competitive-Coding-Library
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGeo Snippet.cpp
368 lines (341 loc) · 8.99 KB
/
Geo Snippet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
// Ref - https://ideone.com/NYur1v
<snippet>
<content><![CDATA[
const double EPS = 1e-9;
const int MAX_SIZE = 1000;
const double PI = 2.0*acos(0.0);
struct PT
{
double x,y;
double length() {return sqrt(x*x+y*y);}
int normalize(){
// normalize the vector to unit length; return -1 if the vector is 0
double l = length();
if(fabs(l)<EPS) return -1;
x/=l; y/=l;
return 0;
}
PT operator-(PT a){
PT r;
r.x=x-a.x; r.y=y-a.y;
return r;
}
PT operator+(PT a){
PT r;
r.x=x+a.x; r.y=y+a.y;
return r;
}
PT operator*(double sc){
PT r;
r.x=x*sc; r.y=y*sc;
return r;
}
};
bool operator<(const PT& a,const PT& b){
if(fabs(a.x-b.x)<EPS) return a.y<b.y;
return a.x<b.x;
}
double dist(PT& a, PT& b){
// the distance between two points
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}
double dot(PT& a, PT& b){
// the inner product of two vectors
return(a.x*b.x+a.y*b.y);
}
// =================================================================
// The Convex Hull
// =================================================================
int sideSign(PT& p1,PT& p2,PT& p3){
// which side is p3 to the line p1->p2? returns: 1 left, 0 on, -1 right
double sg = (p1.x-p3.x)*(p2.y-p3.y)-(p1.y - p3.y)*(p2.x-p3.x);
if(fabs(sg)<EPS) return 0;
if(sg>0) return 1;
return -1;
}
bool better(PT& p1,PT& p2,PT& p3){
// used by convec hull: from p3, if p1 is better than p2
double sg = (p1.y - p3.y)*(p2.x-p3.x)-(p1.x-p3.x)*(p2.y-p3.y);
//watch range of the numbers
if(fabs(sg)<EPS){
if(dist(p3,p1)>dist(p3,p2))return true;
else return false;
}
if(sg<0) return true;
return false;
}
void vex2(vector<PT> vin,vector<PT>& vout){
// vin is not pass by reference, since we will rotate it
vout.clear();
int n=vin.size();
sort(vin.begin(),vin.end());
PT stk[MAX_SIZE];
int pstk, i;
// hopefully more than 2 points
stk[0] = vin[0];
stk[1] = vin[1];
pstk = 2;
for(i=2; i<n; i++){
if(dist(vin[i], vin[i-1])<EPS) continue;
while(pstk > 1 && better(vin[i], stk[pstk-1], stk[pstk-2]))
pstk--;
stk[pstk] = vin[i];
pstk++;
}
for(i=0; i<pstk; i++) vout.push_back(stk[i]);
// turn 180 degree
for(i=0; i<n; i++){
vin[i].y = -vin[i].y;
vin[i].x = -vin[i].x;
}
sort(vin.begin(), vin.end());
stk[0] = vin[0];
stk[1] = vin[1];
pstk = 2;
for(i=2; i<n; i++){
if(dist(vin[i], vin[i-1])<EPS) continue;
while(pstk > 1 && better(vin[i], stk[pstk-1], stk[pstk-2]))
pstk--;
stk[pstk] = vin[i];
pstk++;
}
for(i=1; i<pstk-1; i++){
stk[i].x= -stk[i].x; // don’t forget rotate 180 d back.
stk[i].y= -stk[i].y;
vout.push_back(stk[i]);
}
}
int isConvex(vector<PT>& v){
// test whether a simple polygon is convex
// return 0 if not convex, 1 if strictly convex,
// 2 if convex but there are points unnecesary
// this function does not work if the polycon is self intersecting
// in that case, compute the convex hull of v, and see if both have the same area
int i,j,k;
int c1=0; int c2=0; int c0=0;
int n=v.size();
for(i=0;i<n;i++){
j=(i+1)%n;
k=(j+1)%n;
int s=sideSign(v[i], v[j], v[k]);
if(s==0) c0++;
if(s>0) c1++;
if(s<0) c2++;
}
if(c1 && c2) return 0;
if(c0) return 2;
return 1;
}
// ===============================================================
// Areas
// ===============================================================
double trap(PT a, PT b){
// Used in various area functions
return (0.5*(b.x - a.x)*(b.y + a.y));
}
double area(vector<PT> &vin){
// Area of a simple polygon, not neccessary convex
int n = vin.size();
double ret = 0.0;
for(int i = 0; i < n; i++) ret += trap(vin[i], vin[(i+1)%n]);
return fabs(ret);
}
double peri(vector<PT> &vin){
// Perimeter of a simple polygon, not neccessary convex
int n = vin.size();
double ret = 0.0;
for(int i = 0; i < n; i++) ret += dist(vin[i], vin[(i+1)%n]);
return ret;
}
double triarea(PT a, PT b, PT c){
return fabs(trap(a,b)+trap(b,c)+trap(c,a));
}
double height(PT a, PT b, PT c){
// height from a to the line bc
double s3 = dist(c, b);
double ar=triarea(a,b,c);
return(2.0*ar/s3);
}
// ====================================================
// Points and Lines
// ====================================================
int intersection( PT p1, PT p2, PT p3, PT p4, PT &r ) {
// two lines given by p1->p2, p3->p4 r is the intersection point
// return -1 if two lines are parallel
double d = (p4.y - p3.y)*(p2.x-p1.x) - (p4.x - p3.x)*(p2.y - p1.y);
if( fabs( d ) < EPS ) return -1;
// might need to do something special!!!
double ua, ub;
ua = (p4.x - p3.x)*(p1.y-p3.y) - (p4.y-p3.y)*(p1.x-p3.x);
ua /= d;
// ub = (p2.x - p1.x)*(p1.y-p3.y) - (p2.y-p1.y)*(p1.x-p3.x);
//ub /= d;
r = p1 + (p2-p1)*ua;
return 0;
}
void closestpt( PT p1, PT p2, PT p3, PT &r ){
// the closest point on the line p1->p2 to p3
if( fabs( triarea( p1, p2, p3 ) ) < EPS ) { r = p3; return; }
PT v = p2-p1;
v.normalize();
double pr; // inner product
pr = (p3.y-p1.y)*v.y + (p3.x-p1.x)*v.x;
r = p1+v*pr;
}
int hcenter( PT p1, PT p2, PT p3, PT& r ){
// point generated by altitudes
if( triarea( p1, p2, p3 ) < EPS ) return -1;
PT a1, a2;
closestpt( p2, p3, p1, a1 );
closestpt( p1, p3, p2, a2 );
intersection( p1, a1, p2, a2, r );
return 0;
}
int center( PT p1, PT p2, PT p3, PT& r ){
// point generated by circumscribed circle
if( triarea( p1, p2, p3 ) < EPS ) return -1;
PT a1, a2, b1, b2;
a1 = (p2+p3)*0.5;
a2 = (p1+p3)*0.5;
b1.x = a1.x - (p3.y-p2.y);
b1.y = a1.y + (p3.x-p2.x);
b2.x = a2.x - (p3.y-p1.y);
b2.y = a2.y + (p3.x-p1.x);
intersection( a1, b1, a2, b2, r );
return 0;
}
int bcenter( PT p1, PT p2, PT p3, PT& r ){
// angle bisection
if( triarea( p1, p2, p3 ) < EPS ) return -1;
double s1, s2, s3;
s1 = dist( p2, p3 );
s2 = dist( p1, p3 );
s3 = dist( p1, p2 );
double rt = s2/(s2+s3);
PT a1,a2;
a1 = p2*rt+p3*(1.0-rt);
rt = s1/(s1+s3);
a2 = p1*rt+p3*(1.0-rt);
intersection( a1,p1, a2,p2, r );
return 0;
}
// ===============================================
// Angles
// ===============================================
double angle(PT& p1, PT& p2, PT& p3){
// angle from p1->p2 to p1->p3, returns -PI to PI
PT va = p2-p1;
va.normalize();
PT vb; vb.x=-va.y; vb.y=va.x;
PT v = p3-p1;
double x,y;
x=dot(v, va);
y=dot(v, vb);
return(atan2(y,x));
}
double angle(double a, double b, double c){
// in a triangle with sides a,b,c, the angle between b and c
// we do not check if a,b,c is a triangle here
double cs=(b*b+c*c-a*a)/(2.0*b*c);
return(acos(cs));
}
void rotate(PT p0, PT p1, double a, PT& r){
// rotate p1 around p0 clockwise, by angle a
// don’t pass by reference for p1, so r and p1 can be the same
p1 = p1-p0;
r.x = cos(a)*p1.x-sin(a)*p1.y;
r.y = sin(a)*p1.x+cos(a)*p1.y;
r = r+p0;
}
void reflect(PT& p1, PT& p2, PT p3, PT& r){
// p1->p2 line, reflect p3 to get r.
if(dist(p1, p3)<EPS) {r=p3; return;}
double a=angle(p1, p2, p3);
r=p3;
rotate(p1, r, -2.0*a, r);
}
// ===============================================
// points, lines, and circles
// ===============================================
int pAndSeg(PT& p1, PT& p2, PT& p){
// the relation of the point p and the segment p1->p2.
// 1 if point is on the segment; 0 if not on the line; -1 if on the line but not on the segment
double s=triarea(p, p1, p2);
if(s>EPS) return(0);
double sg=(p.x-p1.x)*(p.x-p2.x);
if(sg>EPS) return(-1);
sg=(p.y-p1.y)*(p.y-p2.y);
if(sg>EPS) return(-1);
return(1);
}
int lineAndCircle(PT& oo, double r, PT& p1, PT& p2, PT& r1, PT& r2){
// returns -1 if there is no intersection
// returns 1 if there is only one intersection
PT m;
closestpt(p1,p2,oo,m);
PT v = p2-p1;
v.normalize();
double r0=dist(oo, m);
if(r0>r+EPS) return -1;
if(fabs(r0-r)<EPS){
r1=r2=m;
return 1;
}
double dd = sqrt(r*r-r0*r0);
r1 = m-v*dd; r2 = m+v*dd;
return 0;
}
int CAndC(PT o1, double r1, PT o2, double r2, PT &q1, PT& q2){
// intersection of two circles
// -1 if no intersection or infinite intersection
// 1 if only one point
double r=dist(o1,o2);
if(r1<r2) { swap(o1,o2); swap(r1,r2); }
if(r<EPS) return(-1);
if(r>r1+r2+EPS) return(-1);
if(r<r1-r2-EPS) return(-1);
PT v = o2-o1; v.normalize();
q1 = o1+v*r1;
if(fabs(r-r1-r2)<EPS || fabs(r+r2-r1)<EPS)
{ q2=q1; return(1); }
double a=angle(r2, r, r1);
q2=q1;
rotate(o1, q1, a, q1);
rotate(o1, q2, -a, q2);
return 0;
}
int pAndPoly(vector<PT> pv, PT p){
// the relation of the point and the simple polygon
// 1 if p is in pv; 0 outside; -1 on the polygon
int i, j;
int n=pv.size();
pv.push_back(pv[0]);
for(i=0;i<n;i++) if(pAndSeg(pv[i], pv[i+1], p)==1) return(-1);
for(i=0;i<n;i++) pv[i] = pv[i]-p;
p.x=p.y=0.0;
double a, y;
while(1){
a=(double)rand()/10000.00;
j=0;
for(i=0;i<n;i++){
rotate(p, pv[i], a, pv[i]);
if(fabs(pv[i].x)<EPS) j=1;
}
if(j==0){
pv[n]=pv[0];
j=0;
for(i=0;i<n;i++) if(pv[i].x*pv[i+1].x < -EPS){
y=pv[i+1].y-pv[i+1].x*(pv[i].y-pv[i+1].y)/(pv[i].x-pv[i+1].x);
if(y>0) j++;
}
return(j%2);
}
}
return 1;
}
]]></content>
<!-- Optional: Set a tabTrigger to define how to trigger the snippet -->
<tabTrigger>geometry</tabTrigger>
<!-- Optional: Set a scope to limit where the snippet will trigger -->
<!-- <scope>source.python</scope> -->
</snippet>