-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathARlocalization1.m
244 lines (200 loc) · 5.46 KB
/
ARlocalization1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
function ARlocalization
% LUIGI files
% open file manually
[fileName,dirName] = uigetfile('*.tif','Choose a .tif file');
I = imread([dirName,fileName]);
Idapi = imread([dirName,fileName(1:end-7),'Dapi.tif']);
% FFT of image (to see if MT mesh will form a rectangle
ih = fft2(I);
ih1 = log(1+abs(ih));
figure,imshow(ih1,[])
% Sum up Dapi and Mt channels
In=Idapi+I;
figure, imshow(In,[])
% filter highly (maybe Median?)
Ign=Gauss2D(In,10);
figure, imshow(Ign,[])
Ign1 = Gauss2D(In,6)
figure, imshow(Ign1,[])
% looks for Edges/Contour
% DoG
I=double(I);
Idapi = double(Idapi);
[cutoffInd4, cutDAPI] = cutFirstHistMode(Idapi,0);
Idapi2 = Idapi>cutDAPI*2;
figure,imshow(Idapi2,[])
distance_image = bwdist(~Idapi2);
figure, imshow(distance_image,[])
colormap(bone)
colorbar
Id2 = bwmorph(Idapi2,'dilate');
Id3 = bwmorph(Id2,'dilate');
Id4 = bwmorph(Id3,'dilate');
Id5 = bwmorph(Id4,'dilate');
Id6 = bwmorph(Id5,'dilate');
Id7 = bwmorph(Id6,'dilate');
Idn = Id7 - Idapi2;
X = bwlabel(Idn);
stats = regionprops(X,'all');
% list = stats(5).PixelIdxList;
% Itest = zeros(size(I,1),size(I,2));
% Itest(list) = I(list);
% figure,imshow(Itest,[])
Iaux = Idn.*I;
figure,imshow(Iaux,[])
colormap(jet)
colorbar
hold on
for i = 1: length(stats)
s(i) = ceil(sum(I(stats(i).PixelIdxList))/length(stats(i).PixelIdxList));
text(stats(i).Centroid(1)-5,stats(i).Centroid(2)-5,[num2str(s(i))],'Color','r');
end
% [aux, Iw] = spotDetector(double(I));
% figure, imshow(Iw,[])
figure,imshow(I,[]) % ORIGINAL IMAGE
figure,imshow(Idapi,[])
aux = Gauss2D(I,1);%1
sigma = 1.25;
I2 = Gauss2D(I,sigma);
I3 = aux - I2;
% figure,imshow(I3,[])
% unimodal
I3(find(I3<0))=0; % clipping
% HOUGH TRANSFORM FIND CIRCLES
figure,imshow(I3,[]) %
% SET TO ZERO AREAS WHERE THERE IS DAPI
% GET THE RINGS FROM DILATION AROUND DAPI
%---------------------------------------------------
% Inew3 = I3 - double(Idapi);
%
% figure, imshow (Inew3,[])
% Inew3(find(Inew3<0))=0; % clipping
% figure, imshow (Inew3,[])
%
%
% [cutoffInd3, cut3] = cutFirstHistMode(I3,0);
% I33 = I3>cut3*26;
% figure, imshow(I33,[])
% Y = bwlabel(I33);
% figure, imshow(Y,[])
%
%
% [cutoffInd, cutoffV] = cutFirstHistMode(I,0); % or I3? % GET THE OUTLINE - check with DAPI to confirm cell
%
%
% % coef = 4 Katsu; coef = 1 Claudio; coef = 1 Lisa_xju103_r11;
% I4 = I>cutoffV*1;%2.5; % REMOVE THE NOISE FEATURES %no 3
%
% figure, imshow(I4,[])
% X = bwlabel(I4);
%
% stats = regionprops(X,'all');
%
% Iaux = I4.*I;
% figure,imshow(Iaux,[])
% hold on
%
% phi = linspace(0,2*pi,50);
% cosphi = cos(phi);
% sinphi = sin(phi);
%
% for k = 1:length(stats)
% xbar = stats(k).Centroid(1);
% ybar = stats(k).Centroid(2);
%
% a = stats(k).MajorAxisLength/2;
% b = stats(k).MinorAxisLength/2;
%
% theta = pi*stats(k).Orientation/180;
% R = [ cos(theta) sin(theta)
% -sin(theta) cos(theta)];
%
% xy = [a*cosphi; b*sinphi];
% xy = R*xy;
%
% x = xy(1,:) + xbar;
% y = xy(2,:) + ybar;
%
% plot(x,y,'r','LineWidth',2);
% end
% hold off
% % multiply 1-0 mask with orginial image
% % bw1 = ismember(Lbw, find([s.MeanIntensity] < 0.01 & [s.Area] > 20 & [s.Area] < 140 ));%default bw1 = ismember(Lbw, find([s.MeanIntensity] < 0.01 & [s.Area] > 20
% % Inew = I.*bw1;
% % read dapi to get 1-0 nucleus
%
% Idapi = double(Idapi);
% % all regions with dapi = 0
% [cutoffInd1, cutoffV1] = cutFirstHistMode(Idapi,0);
% Idapi1 = Idapi>cutoffV1*1;
%
% Ifinal = (I4-Idapi1).*I;
%
% % region props devide I per area
%
% % first debug plot
% X1 = bwlabel(Ifinal);
%
% stats1 = regionprops(X1,'all');
%
% Iaux = I4.*I;
% figure,imshow(Iaux,[])
% hold on
%
% phi = linspace(0,2*pi,50);
% cosphi = cos(phi);
% sinphi = sin(phi);
%
% for k = 1:length(stats)
% xbar = stats(k).Centroid(1);
% ybar = stats(k).Centroid(2);
%
% a = stats(k).MajorAxisLength/2;
% b = stats(k).MinorAxisLength/2;
%
% theta = pi*stats(k).Orientation/180;
% R = [ cos(theta) sin(theta)
% -sin(theta) cos(theta)];
%
% xy = [a*cosphi; b*sinphi];
% xy = R*xy;
%
% x = xy(1,:) + xbar;
% y = xy(2,:) + ybar;
%
% plot(x,y,'r','LineWidth',2);
% end
% hold off
% Ifinal = (I4-Idapi1).*I;
%
% % second debug plot
%
% figure,imshow(X1,[])
% hold on
%
% phi = linspace(0,2*pi,50);
% cosphi = cos(phi);
% sinphi = sin(phi);
%
% for k1 = 1:length(stats1)
% xbar1 = stats1(k1).Centroid(1);
% ybar1 = stats1(k1).Centroid(2);
%
% a1 = stats1(k1).MajorAxisLength/2;
% b1 = stats1(k1).MinorAxisLength/2;
%
% theta1 = pi*stats1(k1).Orientation/180;
% R1 = [ cos(theta1) sin(theta1)
% -sin(theta1) cos(theta1)];
%
% xy1 = [a1*cosphi; b1*sinphi];
% xy1 = R*xy;
%
% x1 = xy1(1,:) + xbar1;
% y1 = xy1(2,:) + ybar1;
%
% plot(x1,y1,'r','LineWidth',2);
% end
% hold off
% % region props Ecc
%