-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfind_words_and_deskew.py
203 lines (178 loc) · 7.3 KB
/
find_words_and_deskew.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import cv2
import numpy as np
import sys
import os
def get_rect_rank(rect):
x_mean=(rect[0]+rect[2])/2
y_mean=(rect[1]+rect[3])/2
rank = (y_mean/50)*50000+x_mean
return rank
img = cv2.imread(sys.argv[1],cv2.IMREAD_GRAYSCALE)
feat_file = open("character.feat",'w')
img[img>=128]=255
img[img<128]=0
img_area=img.shape[0]*img.shape[1]
character_height=[]
above_character_height=[]
below_character_height=[]
character_width=[]
stroke_thickness=[]
out_img =img.copy()
contour_img= img.copy()
img = 255 - img
image, contours, hierarchy = cv2.findContours(img,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_SIMPLE)
contour_rects = []
#out_img = cv2.drawContours(out_img, contours, -1, (0,0,0), 3)
k=0
cnt=0
for (i, j) in zip(contours, hierarchy[0]):
if cv2.contourArea(i) > img_area/150000 and j[3] == -1:
""" Minimum Area Rectangle
rect = cv2.minAreaRect(i)
box = cv2.boxPoints(rect)
box = np.int0(box)
out_img = cv2.drawContours(out_img,[box],0,(0,0,255),2)
"""
x,y,w,h = cv2.boundingRect(i)
contour_rects.append([x,y,x+w,y+h])
contour_rects.sort(key=lambda x:get_rect_rank(x))
for x,y,x_w,y_h in contour_rects:
#cv2.imwrite('word_' + str(k).zfill(3) + '.jpg',out_img[y:y+h,x:x+w])
contour_img = cv2.rectangle(contour_img,(x,y),(x_w,y_h),(0,0,0),2)
k += 1
cv2.putText(contour_img,str(k),(x,y),cv2.FONT_HERSHEY_SIMPLEX, 1, 2)
cv2.imwrite("contours.jpg",contour_img)
print len(contour_rects)
'''
Deskewing starts here
'''
for x,y,x_w,y_h in contour_rects:
word = out_img[y:y_h,x:x_w].copy()
word = 255 - word
minLineLength = word.shape[1]
maxLineGap = 20
#longest_line_index=0
longest_line=[0,0]
confiedence = 100
lines = None
while(lines is None):
lines = cv2.HoughLinesP(word,2,np.pi/180,confiedence,minLineLength,maxLineGap)
#print len(lines)
confiedence -= 5
if(confiedence == 50):
break
if(not(lines is None)):
for loc,line in enumerate(lines):
for x1,y1,x2,y2 in line:
dist = np.sqrt(abs((x2-x1)^2-(y2-y1)^2))
angle = np.arctan((y2-y1)/float(x2-x1)) * 180.0/np.pi
if(dist > longest_line[0] and angle < 30 and angle > -30):
longest_line[0] = dist
longest_line[1] = angle
#longest_line_index = loc
#x1,y1,x2,y2=lines[longest_line_index][0]
#angle = np.arctan((y2-y1)/float(x2-x1)) * 180.0/np.pi
rows,cols = word.shape
rot = cv2.getRotationMatrix2D((cols/2,rows/2),longest_line[1],1)
rotated = 255 - cv2.warpAffine(word,rot,(cols,rows),cv2.INTER_CUBIC)
blur = cv2.GaussianBlur(rotated,(5,5),0)
ret3,deskewed = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
else:
k += 1
cv2.imwrite("word"+"_"+str(k).zfill(3)+".jpg",255-word)
continue
if(word.shape[1]<img.shape[1]/60):
k += 1
cv2.imwrite("word"+"_"+str(k).zfill(3)+".jpg",255-word)
continue
'''
#char splitting starts here
'''
horizontal_histogram = (255*deskewed.shape[1])-deskewed.sum(axis=1)
#plt.plot(horizontal_histogram,'ro')
#plt.show()
upper_start=-1
lower_start=-1
find_upper=True
for loc,i in enumerate(horizontal_histogram):
if( i/255 > deskewed.shape[1]/1.5 and upper_start==-1 and find_upper and horizontal_histogram[loc]<=horizontal_histogram[loc+1] and horizontal_histogram[loc+1] >= horizontal_histogram[loc+2]):
upper_start=loc+1
#print upper_start
if( upper_start!=-1 and find_upper and i/255 < deskewed.shape[1]/1.5):
'''and horizontal_histogram[loc]>=horizontal_histogram[loc+1] and horizontal_histogram[loc+1] <= horizontal_histogram[loc+2]'''
upper_end = loc+1
#print upper_end
find_upper = False
#and horizontal_histogram[loc]>=horizontal_histogram[loc+1] and horizontal_histogram[loc+1] <= horizontal_histogram[loc+2]
if(i/255 < deskewed.shape[1]/4 and loc > deskewed.shape[0]*3/4 and lower_start==-1 and not find_upper ):
lower_start=loc+1
break
#lower_start=horizontal_histogram[upper_end:].argmin()
stroke_width=upper_end-upper_start
stroke_thickness.append(upper_end-upper_start)
#cv2.imwrite(sys.argv[1].replace(".jpg","")+"_"+str(k)+"_upper.jpg",deskewed[:upper_start])
#cv2.imwrite(sys.argv[1].replace(".jpg","")+"_"+str(k)+"_lower.jpg",deskewed[lower_start:])
#cv2.imwrite(sys.argv[1].replace(".jpg","")+"_middle.jpg",deskewed[upper_end:lower_start])
upper = deskewed[:upper_end]
middle = deskewed[upper_end:lower_start]
lower = deskewed[lower_start:]
vertical_histogram = (255*middle.shape[0])-middle.sum(axis=0)
character_height.append(lower_start-upper_end if lower_start!=-1 else -1)
above_character_height.append(upper_start)
below_character_height.append(deskewed.shape[0]-lower_start)
vertical_seg=[]
vertical_break=[]
'''
percentile=[]
for i in range(0,50,2):
percentile.append(np.percentile(vertical_histogram,i))
'''
flag=False
#for loc,data in enumerate(vertical_histogram < np.percentile(vertical_histogram,np.argmax(np.gradient(percentile))*2)):
for loc,data in enumerate(vertical_histogram > 255*stroke_width/2):
if(data):
if(not flag):
vertical_break.append(loc)
flag=True
else:
if(flag):
vertical_break.append(loc)
flag=False
'''
for loc,data in enumerate(vertical_histogram):
if(data/255 < stroke_width):
vertical_seg.append(loc)
for i in range(len(vertical_seg)-1):
if(vertical_seg[i+1] - vertical_seg[i] > 3):
vertical_break.append(vertical_seg[i])
vertical_break.append(vertical_seg[i+1])
#print vertical_break
'''
spacer_array=np.zeros((deskewed.shape[0],2))
spacer_array += 255
spacer_array[:,1]=0
output = np.zeros((deskewed.shape[0],1))
k += 1
#print k
feat_file.write("word"+"_"+str(k).zfill(3)+"\n\n")
for i in range(0,len(vertical_break)-1,2):
character_width.append((k,vertical_break[i+1]-vertical_break[i]))
character=deskewed[:,vertical_break[i]:vertical_break[i+1]]
resized = cv2.resize(character,(9,12),cv2.INTER_AREA)
output=np.concatenate((output,character,spacer_array),axis=1)
#step = np.around(np.sqrt(character.shape/25))
#character=np.concatenate((character,np.zeros((character.shape[0],character.shape[1]%step))),axis=1)
#resized[resized>64]=0
#resized[resized<=64]=1
#vertical_feat = ((255*resized.shape[0])-resized.sum(axis=0))/255
#horizontal_feat = ((255*resized.shape[1])-resized.sum(axis=1))/255
feat_file.write("character: "+str(i/2).zfill(2)+" "+str(resized.shape[0])+"x"+str(resized.shape[1])+"\n")
for col in resized:
for row in col:
feat_file.write("0" if row < 64 else " ")
feat_file.write("\n")
feat_file.write("\n\n")
cv2.imwrite("word"+"_"+str(k).zfill(3)+".jpg",output)
#cv2.imwrite(sys.argv[2],deskewed)
#plt.plot(vertical_histogram)
#plt.show()