-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
515 lines (406 loc) · 21.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
import os
import tkinter as tk
from PIL import Image, ImageTk, ImageDraw
from tkinter import filedialog
import pydicom
import numpy as np
import ttkbootstrap as ttk
from tkinter import messagebox
from segment_anything import sam_model_registry, SamPredictor
import cv2
import torch
import dicom2nifti
class ImageFrame:
def __init__(self, master):
self.master = master
self.pan_image = False
self.start_x = 0
self.start_y = 0
self.images = []
self.image_index = 0
self.min_val = -200
self.max_val = 200
self.zoom_scale = 1
self.masks_dict = {}
# Variables for bounding box
self.draw_bbox = False
self.start_bbox_x = 0
self.start_bbox_y = 0
self.current_bbox = None
# Add a mapping from class ids to colors
self.bbox_colors = {0: '#ffc800', 1: '#00ff00', 2: '#0000ff', 3: '#aa1bc4', 4: '#abc234', 5:'#006faa'}
self.current_class = 0 # Set the initial class
# Create frame for buttons
self.button_frame = ttk.Frame(master, width=200)
self.button_frame.pack(side="left", fill="y")
# Create buttons
self.open_image_button = ttk.Button(self.button_frame, text="Open Image", command=self.open_image)
self.open_image_button.pack(fill="x", pady=(0,10))
self.open_directory_button = ttk.Button(self.button_frame, text="Open Directory", command=self.open_directory)
self.open_directory_button.pack(fill="x", pady=(0,10))
# Add a button to activate "draw bounding box" mode
self.draw_bbox_button = ttk.Button(self.button_frame, text="Activate Draw", command=self.activate_bbox_mode)
self.draw_bbox_button.pack(fill="x", pady=(0,20))
# Creating the delete button
delete_button = ttk.Button(self.button_frame, text="Delete Annotation", command=self.delete_file)
delete_button.pack(fill="x", pady=(0,20))
# Add an inference button
self.inference_button = ttk.Button(self.button_frame, text="Launch SAM", command=self.start_inference)
self.inference_button.pack(fill="x", pady=(0,10))
# Save dicom masks
self.save_button = tk.Button(self.button_frame, text="Export Segmentation", command=self.save_masks_as_dicom)
self.save_button.pack(fill="x")
# Create canvas
self.canvas = ttk.Canvas(master, width=616, height=616, bg="white")
self.canvas.pack(side="right", fill="both", expand=True)
# Create frame for file list
self.file_frame = ttk.Frame(master, width=300)
self.file_frame.pack(side="right", fill="y")
# Create a scrollbar
self.scrollbar = ttk.Scrollbar(self.file_frame)
self.scrollbar.pack(side="right", fill="y")
# Create a listbox
self.file_list = tk.Listbox(self.file_frame, yscrollcommand=self.scrollbar.set)
self.file_list.pack(side="left", fill="both")
self.scrollbar.config(command=self.file_list.yview)
# Mouse events for zooming and panning
self.canvas.bind("<Button-1>", self.start_pan)
self.canvas.bind("<B1-Motion>", self.pan_image)
self.canvas.bind("<ButtonRelease-1>", self.end_bbox)
# Bind events for drawing bounding box
self.canvas.bind("<Button-1>", self.start_bbox)
self.canvas.bind("<B1-Motion>", self.update_bbox)
# Create a class selector
self.class_var = tk.StringVar(master)
self.class_var.set('0') # Set the initial class
self.class_selector = tk.OptionMenu(self.button_frame, self.class_var, *self.bbox_colors.keys())
self.class_selector.pack(fill="x", pady=(10,20))
self.class_var.trace('w', self.update_current_class)
self.min_val_slider_label = ttk.Label(self.button_frame, text='MIN')
self.min_val_slider_label.pack()
self.min_val_slider = ttk.Scale(self.button_frame,from_=-3000, to=3000, orient=tk.HORIZONTAL, command=self.update_min_val, length=200)
self.min_val_slider.pack(fill="x", pady=(0,10))
self.max_val_slider_label = ttk.Label(self.button_frame, text='MAX')
self.max_val_slider_label.pack()
self.max_val_slider = ttk.Scale(self.button_frame, from_=-3000, to=3000, orient=tk.HORIZONTAL, command=self.update_max_val)
self.max_val_slider.pack(fill="x")
# Create next and previous buttons
self.next_previous_buttons_frame = ttk.Frame(self.button_frame)
self.next_previous_buttons_frame.pack(side='bottom')
self.previous_button = ttk.Button(self.next_previous_buttons_frame, text="Previous Image", command=self.move_to_previous_image)
self.previous_button.pack(side="left", padx=(10,10))
self.next_button = ttk.Button(self.next_previous_buttons_frame, text="Next Image", command=self.move_to_next_image)
self.next_button.pack(side="right", padx=(10,10))
# Initialize the SAM model and predictor
sam_checkpoint = "model/sam_vit_b_01ec64.pth"
model_type = "vit_b"
device = "cuda"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
self.predictor = SamPredictor(sam)
def update_current_class(self, *args):
self.current_class = int(self.class_var.get())
def prepare_dicoms(self, dicom_file_data, max_v=None, min_v=None):
if max_v: HOUNSFIELD_MAX = int(float(max_v))
else: HOUNSFIELD_MAX = np.max(dicom_file_data)
if min_v:HOUNSFIELD_MIN = int(float(min_v))
else: HOUNSFIELD_MIN = np.min(dicom_file_data)
HOUNSFIELD_RANGE = HOUNSFIELD_MAX - HOUNSFIELD_MIN
dicom_file_data[dicom_file_data < HOUNSFIELD_MIN] = HOUNSFIELD_MIN
dicom_file_data[dicom_file_data > HOUNSFIELD_MAX] = HOUNSFIELD_MAX
normalized_image = (dicom_file_data - HOUNSFIELD_MIN) / HOUNSFIELD_RANGE
uint8_image = np.uint8(normalized_image*255)
return uint8_image
def prepare_dicoms_sam(self, dcm_file, min_v, max_v):
dicom_file_data = pydicom.dcmread(dcm_file).pixel_array
HOUNSFIELD_MAX = max_v # np.max(dicom_file_data)
HOUNSFIELD_MIN = min_v # np.min(dicom_file_data)
HOUNSFIELD_RANGE = HOUNSFIELD_MAX - HOUNSFIELD_MIN
dicom_file_data[dicom_file_data < HOUNSFIELD_MIN] = HOUNSFIELD_MIN
dicom_file_data[dicom_file_data > HOUNSFIELD_MAX] = HOUNSFIELD_MAX
normalized_image = (dicom_file_data - HOUNSFIELD_MIN) / HOUNSFIELD_RANGE
uint8_image = np.uint8(normalized_image*255)
opencv_image = cv2.cvtColor(uint8_image, cv2.COLOR_GRAY2BGR)
return opencv_image
def load_files(self):
dir_path = os.path.dirname(self.images[0])
txt_files = [f for f in os.listdir(dir_path) if f.endswith('.txt')]
self.file_list.delete(0, tk.END)
for file in txt_files:
self.file_list.insert(tk.END, file)
def update_min_val(self, value):
self.min_val = int(float(value))
self.load_image()
def update_max_val(self, value):
self.max_val = int(float(value))
self.load_image()
def activate_bbox_mode(self):
self.draw_bbox = not self.draw_bbox
# Update button text to reflect current mode
if self.draw_bbox:
self.draw_bbox_button.config(text="Deactivate Draw")
else:
self.draw_bbox_button.config(text="Activate Draw")
def start_bbox(self, event):
if self.draw_bbox:
self.start_bbox_x = self.canvas.canvasx(event.x)
self.start_bbox_y = self.canvas.canvasy(event.y)
def update_bbox(self, event):
if self.draw_bbox:
if self.current_bbox:
self.canvas.delete(self.current_bbox)
end_bbox_x = self.canvas.canvasx(event.x)
end_bbox_y = self.canvas.canvasy(event.y)
self.current_bbox = self.canvas.create_rectangle(self.start_bbox_x, self.start_bbox_y, end_bbox_x, end_bbox_y, outline=self.bbox_colors[self.current_class], width=3)
def scale_bbox(self, bbox, scale_factor_x, scale_factor_y):
x1, y1, x2, y2 = bbox
scaled_bbox = [x1 * scale_factor_x, y1 * scale_factor_y, x2 * scale_factor_x, y2 * scale_factor_y]
return scaled_bbox
def write_bbox_to_file(self):
# Transform the bounding box coordinates back to the original image size
bbox = self.canvas.bbox(self.current_bbox)
scale_factor = min(self.canvas.winfo_width() / self.original_image.width, self.canvas.winfo_height() / self.original_image.height)
original_bbox = [coord / scale_factor for coord in bbox]
# Get the file name without extension
base_name = os.path.splitext(self.images[self.image_index])[0]
# Create the corresponding .txt filename
txt_filename = f'{base_name}.txt'
# Calculate the image width and height for normalization
image_width, image_height = self.original_image.size
# Calculate the normalized bounding box
normalized_bbox = [
original_bbox[0] / image_width, # x_start
original_bbox[1] / image_height, # y_start
original_bbox[2] / image_width, # x_end
original_bbox[3] / image_height # y_end
]
# Write the class and the normalized bounding box coordinates into the file
with open(txt_filename, 'a') as f: # Change 'w' to 'a' to append instead of overwriting
f.write(f'{self.current_class} ' + ' '.join(map(str, normalized_bbox)) + '\n') # Add a newline at the end
def open_image(self):
img_path = filedialog.askopenfilename(filetypes=(("DICOM Files", "*.dcm"), ("All Files", "*.*")))
if img_path:
self.images = [img_path]
self.image_index = 0
self.load_image()
self.load_files()
def open_directory(self):
dir_path = filedialog.askdirectory()
if dir_path:
self.images = [os.path.join(dir_path, f) for f in os.listdir(dir_path) if f.endswith(('.dcm'))]
self.image_index = 0
self.load_image()
self.load_files()
def load_image(self):
# Read DICOM file
dicom = pydicom.dcmread(self.images[self.image_index])
dicom = self.prepare_dicoms(dicom.pixel_array, min_v=self.min_val, max_v=self.max_val)
self.image = Image.fromarray(dicom)
self.original_image = self.image.copy()
# Convert the image to RGB
self.image = self.image.convert("RGB")
self.original_image = self.original_image.convert("RGB")
# Get the image size
image_width, image_height = self.image.size
new_width = image_width
new_height = image_height
# Get the canvas size
canvas_width = self.canvas.winfo_width()
canvas_height = self.canvas.winfo_height()
# Scale the image to fit within the canvas while maintaining its aspect ratio
if image_width > canvas_width or image_height > canvas_height:
scale_factor = min(canvas_width / image_width, canvas_height / image_height)
new_width = int(image_width * scale_factor)
new_height = int(image_height * scale_factor)
self.image = self.image.resize((new_width, new_height))
# Resize the canvas to fit the image
self.canvas.config(width=new_width, height=new_height)
# If the .txt file exists, draw a bbox on the image
txt_file = self.images[self.image_index].replace('.dcm', '.txt')
bboxes = []
if os.path.exists(txt_file):
with open(txt_file, 'r') as f:
for line in f.readlines():
content = line.strip().split(' ')
bbox_norm = [float(val) for val in content[1:]] # Ignoring the class id (0) here
original_bbox = [
bbox_norm[0] * image_width, # x_start
bbox_norm[1] * image_height, # y_start
bbox_norm[2] * image_width, # x_end
bbox_norm[3] * image_height # y_end
]
scaled_bbox = self.scale_bbox(original_bbox, new_width / image_width, new_height / image_height)
bboxes.append(scaled_bbox)
draw = ImageDraw.Draw(self.image)
# Now the outline color can be set to a tuple representing RGB values (0-255 each)
draw.rectangle(scaled_bbox, outline=self.bbox_colors[int(content[0])], width=3) # Use the class id to get the corresponding color
del draw
# If the image has masks saved from previous inference, display them
if self.images[self.image_index] in self.masks_dict:
masks = self.masks_dict[self.images[self.image_index]]
self.display_inference_results(self.images[self.image_index], bboxes)
else:
self.tk_image = ImageTk.PhotoImage(self.image)
self.canvas.delete("all")
self.canvas.create_image(0, 0, anchor="nw", image=self.tk_image)
def end_bbox(self, event):
if self.draw_bbox:
self.write_bbox_to_file()
def move_to_previous_image(self):
if self.image_index > 0:
self.image_index -= 1
self.load_image()
self.load_files()
def move_to_next_image(self, event=None):
if self.image_index < len(self.images) - 1:
self.image_index += 1
self.load_image()
self.load_files()
def start_pan(self, event):
self.pan_image = True
self.start_x = event.x
self.start_y = event.y
def stop_pan(self, event):
self.pan_image = False
self.start_x = None
self.start_y = None
def pan_image(self, event):
if self.pan_image:
dx = event.x - self.start_x
dy = event.y - self.start_y
self.canvas.move("all", dx, dy)
self.start_x = event.x
self.start_y = event.y
def zoom_image(self, event):
# Get the current mouse position
x = self.canvas.canvasx(event.x)
y = self.canvas.canvasy(event.y)
# Make the zoom level dependent on the direction of the mouse wheel
if event.delta > 0:
# Zoom in
self.image = self.original_image.resize((int(self.image.width * 1.1), int(self.image.height * 1.1)))
else:
# Zoom out
self.image = self.original_image.resize((int(self.image.width * 0.9), int(self.image.height * 0.9)))
self.tk_image = ImageTk.PhotoImage(self.image)
self.canvas.delete("all")
self.canvas.create_image(x, y, image=self.tk_image)
def delete_file(self):
try:
selected_file = self.file_list.get(self.file_list.curselection()) # Here I'm assuming you're using a file_list widget for file selection
if selected_file.endswith('.txt'):
response = messagebox.askyesno("Confirmation",
f"Do you really want to delete {selected_file}?")
if response == 1: # If user clicks 'yes'
os.remove(os.path.join(os.path.dirname(self.images[0]), selected_file) )
self.file_list.delete(self.file_list.curselection()) # Remove the file from the file_list
else:
messagebox.showerror("Error", "Selected file is not a txt file.")
except:
print('Problem with the file delete')
def start_inference(self):
print('[INFO]: Starting inference')
# Create a dictionary to store masks for each image
self.masks_dict = {}
# Assuming the DICOM files are in self.images and bounding boxes in .txt files
for image_path in self.images:
txt_file = image_path.replace('.dcm', '.txt')
# Continue if there's no associated txt file
if not os.path.exists(txt_file):
continue
img = self.prepare_dicoms_sam(image_path, min_v=self.min_val, max_v=self.max_val)
self.predictor.set_image(img)
img_width, img_height, _ = img.shape
# Load all bounding boxes
bounding_boxes = []
with open(txt_file, 'r') as f:
content = f.readlines()
for line in content:
bbox_norm = [float(val) for val in line.strip().split()[1:]] # Ignoring the class id (0) here
bbox = [
int(bbox_norm[0] * img_width), # x_start
int(bbox_norm[1] * img_height), # y_start
int(bbox_norm[2] * img_width), # x_end
int(bbox_norm[3] * img_height) # y_end
]
bounding_boxes.append(bbox)
# Convert list of bounding boxes to torch tensor
bounding_boxes_torch = torch.tensor(bounding_boxes, device=self.predictor.device)
# Apply transform to bounding boxes
transformed_boxes = self.predictor.transform.apply_boxes_torch(bounding_boxes_torch, img.shape[:2])
# Perform prediction for all bounding boxes at once
masks, _, _ = self.predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
)
# Save masks for this image
self.masks_dict[image_path] = masks
self.display_inference_results(image_path, bounding_boxes_torch)
def display_inference_results(self, image_path, bboxes):
# Retrieve the saved masks for this image
masks = self.masks_dict.get(image_path, [])
# Continue if there are no saved masks
if masks.nelement() == 0:
return
# Load image and prepare for overlaying the masks
img = self.prepare_dicoms_sam(image_path, min_v=self.min_val, max_v=self.max_val)
img = Image.fromarray(img)
img = img.convert("RGB")
# Create an empty Image object
img_with_mask = Image.new('RGBA', img.size)
# Paste the original image
img_with_mask.paste(img)
# Ensure the length of masks and bboxes are the same
assert len(masks) == len(bboxes), "The number of masks should be equal to the number of bounding boxes."
for mask, bbox in zip(masks, bboxes):
# Create a mask image
mask_img = Image.fromarray((mask[0].cpu().numpy() * 255).astype('uint8'), 'L')
colored_mask = Image.new('RGBA', img.size, color=(255, 200, 0, int(0.6*255))) # Yellow color with 0.6 alpha
img_with_mask.paste(colored_mask, mask=mask_img)
# Draw the bounding box
draw = ImageDraw.Draw(img_with_mask)
draw.rectangle([bbox[0], bbox[1], bbox[2], bbox[3]], outline='green', width=2)
# Convert the final image to PhotoImage and display on the canvas
self.final_image_tk = ImageTk.PhotoImage(img_with_mask)
self.canvas.create_image(0, 0, image=self.final_image_tk, anchor='nw')
def save_masks_as_dicom(self):
ask_file = filedialog.askdirectory()
if ask_file:
print('[INFO]: Exporting masks to dicom')
for image_path in self.images:
dicom = pydicom.dcmread(image_path)
masks = self.masks_dict.get(image_path)
if masks is not None: # If masks are available
# Initialize an empty numpy array to store the combined mask
combined_mask = np.zeros_like(masks[0][0].cpu().numpy())
# Iterate over all masks and combine them
for mask in masks:
mask_np = mask[0].cpu().numpy()
combined_mask = np.maximum(combined_mask, mask_np)
# Replace the pixel array with the combined mask
dicom.PixelData = (combined_mask * 255).astype(np.uint8).tobytes()
else: # If no masks
# Create an empty pixel array
dicom.PixelData = np.zeros_like(dicom.pixel_array, dtype=np.uint8).tobytes()
# Set photometric interpretation to "MONOCHROME2"
dicom.PhotometricInterpretation = "MONOCHROME2"
# Set pixel representation and bits allocated for grayscale image
dicom.PixelRepresentation = 0
dicom.BitsAllocated = 8
# Save the new DICOM file
save_path = os.path.join(ask_file, 'dicom_masks')
os.makedirs(save_path, exist_ok=True)
dicom.save_as(os.path.join(save_path, os.path.basename(image_path).replace('.dcm', '_seg.dcm')))
print('[INFO]: Converting dicom to nifti')
dicom2nifti.dicom_series_to_nifti(save_path, os.path.join(ask_file, f'{os.path.basename(os.path.dirname(self.images[0]))}_sam_segmentation.nii.gz'))
dicom2nifti.dicom_series_to_nifti(os.path.dirname(self.images[0]), os.path.join(ask_file, f'{os.path.basename(os.path.dirname(self.images[0]))}.nii.gz'))
print('[INFO]: Files Exported')
if __name__ == '__main__':
ttk_root = ttk.Window()
ttk_root.style.theme_use('superhero')
ttk_root.title('Medical Annotation')
ttk_root.iconbitmap('utils/icon.ico')
app = ImageFrame(ttk_root)
ttk_root.mainloop()