-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.py
266 lines (189 loc) · 9.73 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import pandas as pd
import numpy as np
import scipy
import math
import os
import seaborn as sns #visualisation
import matplotlib.pyplot as plt #visualisation
# Managing Warnings
import warnings
warnings.filterwarnings('ignore')
import sklearn
from sklearn.decomposition import PCA
from sklearn import preprocessing
from sklearn.impute import SimpleImputer
def plot_distribution(dataset):
plt.style.use('seaborn-whitegrid')
fig = plt.figure(figsize=(20,30))
fig.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.5, hspace=0.5)
rows = math.ceil(float(dataset.shape[1]) / 3)
for i, column in enumerate(dataset.columns):
ax = fig.add_subplot(rows, 3, i + 1)
ax.set_title(column)
if dataset.dtypes[column] == np.object:
if(len(dataset[column].unique()) > 10):
most_frequent = dataset[column].value_counts().sort_values(ascending=False)[:10].index.tolist()
g = sns.countplot(y=column, data=dataset[dataset[column].isin(most_frequent)])
ax.set_title(column + " (10 out of " + str(len(dataset[column].unique())) + " most frequent values)")
else:
g = sns.countplot(y=column, data=dataset)
substrings = [s.get_text()[:18] for s in g.get_yticklabels()]
g.set(yticklabels=substrings)
plt.xticks(rotation=25)
else:
g = sns.distplot(dataset[column])
plt.xticks(rotation=25)
def plot_distribution_train_test(train, test):
plt.style.use('seaborn-whitegrid')
fig = plt.figure(figsize=(20,30))
fig.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.5, hspace=0.5)
rows = math.ceil(float(train.shape[1]) / 3)
j = 0
for i, column in enumerate(train.columns):
if train.dtypes[column] != np.object:
ax = fig.add_subplot(rows, 3, j + 1)
ax.set_title(column)
sns.distplot(train[column], hist=False, rug=True, label="train")
sns.distplot(test[column], hist=False, rug=True, label="test")
plt.legend()
plt.xticks(rotation=25)
j = j+1
def canonicalize_dataset(df):
# Replace '?' with null values and keep rows where Viability is not null
df = df.replace('?', np.nan)
df = df[df['Viability'].notna()]
# Replace floating-point comma with dot and make sure numerical columns have numeric data type
if(df["core_size_nm"].dtype == np.object):
df["core_size_nm"] = df["core_size_nm"].str.replace(',','.')
df["core_size_nm"] = pd.to_numeric(df["core_size_nm"])
df["core_size_nm"] = df["core_size_nm"].astype(float)
if(df["hydro_size_nm"].dtype == np.object):
df["hydro_size_nm"] = df["hydro_size_nm"].str.replace(',','.')
df["hydro_size_nm"] = pd.to_numeric(df["hydro_size_nm"])
df["hydro_size_nm"] = df["hydro_size_nm"].astype(float)
if(df["Surf_charge_mV"].dtype == np.object):
df["Surf_charge_mV"] = df["Surf_charge_mV"].str.replace(',','.')
df["Surf_charge_mV"] = pd.to_numeric(df["Surf_charge_mV"])
df["Surf_charge_mV"] = df["Surf_charge_mV"].astype(float)
if(df["Surface_area_m2_g"].dtype == np.object):
df["Surface_area_m2_g"] = df["Surface_area_m2_g"].str.replace(',','.')
df["Surface_area_m2_g"] = pd.to_numeric(df["Surface_area_m2_g"])
df["Surface_area_m2_g"] = df["Surface_area_m2_g"].astype(float)
if(df["Dose_microg_mL"].dtype == np.object):
df["Dose_microg_mL"] = df["Dose_microg_mL"].str.replace(',','.')
df["Dose_microg_mL"] = pd.to_numeric(df["Dose_microg_mL"])
df["Dose_microg_mL"] = df["Dose_microg_mL"].astype(float)
if(df["Viability"].dtype == np.object):
df["Viability"] = df["Viability"].str.replace(',','.')
df["Viability"] = pd.to_numeric(df["Viability"])
df["Viability"] = df["Viability"].astype(float)
if(df["Duration_h"].dtype == np.object):
df["Duration_h"] = df["Duration_h"].str.replace(',','.')
df["Duration_h"] = pd.to_numeric(df["Duration_h"])
df["Duration_h"] = df["Duration_h"].astype(float)
print("Does numeric columns have float64 pandas type? \n")
print("Duration_h: " + str(pd.api.types.is_numeric_dtype(df['Duration_h'])))
print("core_size_nm: " + str(pd.api.types.is_numeric_dtype(df['core_size_nm'])))
print("hydro_size_nm: " + str(pd.api.types.is_numeric_dtype(df['hydro_size_nm'])))
print("Surf_charge_mV: " + str(pd.api.types.is_numeric_dtype(df['Surf_charge_mV'])))
print("Surface_area_m2_g: " + str(pd.api.types.is_numeric_dtype(df['Surface_area_m2_g'])))
print("Dose_microg_mL: " + str(pd.api.types.is_numeric_dtype(df['Dose_microg_mL'])))
print("Duration_h: " + str(pd.api.types.is_numeric_dtype(df['Duration_h'])))
print("Viability: " + str(pd.api.types.is_numeric_dtype(df['Viability'])))
df = df.round(decimals = 2)
df['Assay'] = df['Assay'].str.strip()
df['NP_type'] = df['NP_type'].str.strip()
df['shape'] = df['shape'].str.strip()
df['Cell_name'] = df['Cell_name'].str.strip()
df['Cell_species'] = df['Cell_species'].str.strip()
df['cell_Organ'] = df['cell_Organ'].str.strip()
df['Cell_morphology'] = df['Cell_morphology'].str.strip()
df['Cell_age'] = df['Cell_age'].str.strip()
df['cell_type'] = df['cell_type'].str.strip()
df['sex'] = df['sex'].str.strip()
df['Assay'] = df['Assay'].str.strip()
df = df.drop_duplicates()
df = df.reset_index(drop=True)
df["nanomaterial_group"] = df["NP_type"]
metal_oxides = ["SiO2", "MgO", "TiO2", "ZnO", "Bi2O3", "CuO", "Cu2O", "Fe3O4", "IronOxide", "MnO", "ZrO2", "Co3O4", "CoO",
"Mn2O3", "Ni2O3", "Al2O3", "Fe2O3", "In2O3", "La2O3", "NiO", "Sb2O3", "SnO2", "Y2O3", "CeO2", "CdO", "Dy2O3",
"Er2O3", "Eu2O3", "Gd2O3", "HfO2", "MnO2", "Nd2O3", "Sm2O3", "Yb2O3", "Cr2O3"]
carbon = ["Graphite", "Diamond", "C60", "C70", "Carbon"]
nanotubes = ["Nanotubes", "SWCNT", "MWCNT"]
quantum_dots = ['CdSe', 'CdTe', 'CdSeTe', 'CdZnS', 'CdS', 'CdTeS', 'CdHgTe', 'CdSeS', 'CdGeS', 'CdGdTe', 'CdZnSeS', 'QD', 'QDs']
combined_groups = list(metal_oxides + carbon + nanotubes + quantum_dots)
df.loc[df["NP_type"].isin(metal_oxides), "nanomaterial_group"] = "meta_oxide"
df.loc[df["NP_type"].isin(carbon), "nanomaterial_group"] = "carbon"
df.loc[df["NP_type"].isin(nanotubes), "nanomaterial_group"] = "nanotubes"
df.loc[df["NP_type"].isin(quantum_dots), "nanomaterial_group"] = "quantum_dots"
df.loc[~df["NP_type"].isin(combined_groups), "nanomaterial_group"] = "other"
df.insert(len(df.columns)-2, 'nanomaterial_group', df.pop('nanomaterial_group'))
#df = df.dropna(subset=['hydro_size_nm', 'Surf_charge_mV', 'Surface_area_m2_g', 'shape'], thresh=2)
print("\nFinal column types: \n")
print(df.dtypes)
print("\nNP types that fall into the 'other' group:")
print(df['NP_type'][~df['NP_type'].isin(combined_groups)].unique())
return df
def convert_to_classification_dataset(df):
df["viability_class"] = df["Viability"]
df.loc[df["Viability"] < 50.0, "viability_class"] = "Toxic"
df.loc[df["Viability"] >= 50.0, "viability_class"] = "NonToxic"
df = df.drop('Viability', axis=1)
return df
def quantile_discretize(df, y):
df[y+'_discrete'] = pd.qcut(df[y], q=5)
return df
def round_float(s):
import re
m = re.match("(\d+\.\d+)",s.__str__())
try:
r = round(float(m.groups(0)[0]),2)
except:
r = s
return r
#https://onlinelibrary.wiley.com/doi/abs/10.1002/qsar.200610151
#https://doi.org/10.1016/B978-044452701-1.00007-7
#https://xiangyuw.medium.com/high-leverage-points-in-simple-linear-regression-d7bfed545540
def calculate_leverage(df):
actualmean = df['Viability'].mean()
num = df.shape[0]
within_domain=[]
leverage = []
denom = 0
for i in range(0, num):
denom += (df['Viability'][i] - actualmean) ** 2.
for i in range(0, num):
leverage_i = ((df['Viability'][i] - actualmean)** 2.)/(denom) + (1/num)
leverage.append(leverage_i)
df.insert(df.shape[1]-1, "Leverage", leverage, True)
hat = df.shape[1] * 3 / df.shape[0]
# Another threshold: hat = df['Leverage'].mean()*3.0
for i in range(0, num):
if df['Leverage'][i] > hat:
within_domain.append('Invalid')
else:
within_domain.append('Valid')
df.insert(df.shape[1]-1, "Within Domain", within_domain, True)
return df
def calculate_residuals(df):
df.insert(df.shape[1]-1, "Residual", df['Viability']-df['Label'], True)
return df
# The standardized residual is the ratio of the individual raw residual divided by the standard deviation.
def calculate_standard_residuals(df):
df.insert(df.shape[1]-1, "Standard Residual", df['Residual']/(df['Residual'].std()), True)
within_sd = []
within_domain_and_sd = []
consec = 0
for i in range(0, df.shape[0]):
if ((df['Standard Residual'][i] < 3.0) & (df['Standard Residual'][i] > -3.0)):
within_sd.append('Valid')
if((df['Within Domain'][i] == 'Valid')):
within_domain_and_sd.append('Valid')
else:
within_domain_and_sd.append('Invalid')
else:
within_sd.append('Invalid')
within_domain_and_sd.append('Invalid')
df.insert(df.shape[1]-1, 'Within SD', within_sd, True)
df.insert(df.shape[1]-1, 'Within Domain and SD', within_domain_and_sd, True)
return df