-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.py
435 lines (351 loc) · 15.1 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import math
import numpy as np
import random as nd
import matplotlib.pyplot as plt
def create_initial_generation(data_set,
min_length_chromosome,
max_length_chromosome,
generation_size,
max_sigma,
data_set_raw):
initial_chromosomes = []
# create list of chromosome length with the size of generation_size
chromosomes_length = np.random.randint(min_length_chromosome, max_length_chromosome, generation_size)
# create list of sigma values with the size of generation_size
makhraj = (data_set.shape[0] * data_set.shape[1]) ** (1 / float(data_set.shape[1]))
radial = get_farthest_distance(data_set) / makhraj
sigma_values = np.random.uniform(0.1 * max_sigma, max_sigma, generation_size)
for i in range(generation_size):
current_chromosome = []
radius_values = np.abs(np.random.normal(radial, radial * 0.75, chromosomes_length[i]))
for j in range(chromosomes_length[i]):
for k in range(1, data_set_raw.shape[1]):
mmin = data_set_raw[k].min()
mmax = data_set_raw[k].max()
current_chromosome.append(nd.uniform(mmin, mmax))
current_chromosome.append(radius_values[j])
current_chromosome.append(sigma_values[i])
initial_chromosomes.append(current_chromosome)
return initial_chromosomes
# we take the minimum length of chromosome equal to number of class in
# classification mode and 0.2 * class_labels_size in regression mode
# also we take maximum length of chromosome = 0.4 * data_set_length
# initial_number_chromosomes = 0.4 * data set size
def initialization_parameter(data_set,
regression_threshold,
ratio_min_length_chromosome_reg,
ratio_max_length_chromosome,
ratio_max_sigma,
ratio_initial_number_chromosomes):
# first finding algorithm mode
class_labels_size = len(data_set[data_set.shape[1]].unique())
if class_labels_size <= 2:
algorithm_mode = 'Classification_2'
min_length_chromosome = class_labels_size
elif class_labels_size < int(regression_threshold * data_set.shape[0]):
algorithm_mode = 'Classification_n'
min_length_chromosome = class_labels_size
else:
algorithm_mode = 'Regression'
min_length_chromosome = ratio_min_length_chromosome_reg
max_length_chromosome = ratio_max_length_chromosome
max_range, min_range = get_max_min_range_dataset(data_set)
max_sigma_mutation = (max_range - min_range) * ratio_max_sigma
initial_number_chromosomes = ratio_initial_number_chromosomes
return algorithm_mode, \
min_length_chromosome, \
max_length_chromosome, \
max_sigma_mutation, \
initial_number_chromosomes, \
class_labels_size
def get_max_min_range_dataset(data_set):
max_range = -9223372036854775807
min_range = 9223372036854775807
for i in range(1, data_set.shape[1]):
max_range = max(max_range, data_set[i].max())
min_range = min(min_range, data_set[i].min())
return max_range, min_range
def get_farthest_distance(dataset):
max_distance = 0
for i in range(dataset.shape[0]):
node1 = dataset[i]
for j in range(i + 1, dataset.shape[0]):
node2 = dataset[j]
max_distance = max(max_distance, get_distance(node1, node2))
return max_distance
def get_distance(p1, p2):
sum_num = 0
for i in range(len(p1)):
sum_num += (p1[i] - p2[i]) ** 2
sum_num = math.sqrt(sum_num)
return sum_num
def selecting_parents_random_uniform(seed):
parents = []
indexes = np.random.randint(0, len(seed), 7 * len(seed))
for i in range(len(indexes)):
parents.append(seed[indexes[i]])
return parents
def do_mutation(generation, dimension_size):
# first we must mutate sigma and then each gene
for i in range(len(generation)):
# for j in range(dimension_size, len(generation[i]) - 1, 3):
# generation[i][j] = generation[i][j] * math.exp(-(1 / math.sqrt(dimension_size) * np.random.normal(0, 1)))
# for k in range(j - dimension_size, j):
# generation[i][k] = generation[i][k] + generation[i][j] * np.random.normal(0, 1)
generation[i][-1] = generation[i][-1] * math.exp(-((1 / math.sqrt(dimension_size)) * nd.normalvariate(0, 1)))
for j in range(len(generation[i]) - 1):
generation[i][j] = generation[i][j] + generation[i][-1] * nd.normalvariate(0, 1)
def recombination_chromosomes(generation):
childes = []
for i in range(len(generation)):
chromosome1 = generation[i]
for j in range(i + 1, len(generation)):
chromosome2 = generation[j]
if nd.uniform(0, 1) <= 0.4:
childes.append(do_recombination(chromosome1, chromosome2))
return childes
def do_recombination(ch1, ch2):
if len(ch1) <= len(ch2):
lower_length = ch1
higher_length = ch2
else:
lower_length = ch2
higher_length = ch1
new_child = []
for i in range(len(lower_length)):
new_child.append((higher_length[i] + lower_length[i]) / 2.0)
if np.random.uniform(0, 1) >= 0.5:
for i in range(len(lower_length), len(higher_length)):
new_child.append(higher_length[i])
return new_child
def evaluate_generation(dataset, generation, y_star, running_mode):
dimension = dataset.shape[1]
# first calculate G matrix
list_g_matrices = [[] for i in range(len(generation))]
for i in range(dataset.shape[0]):
data_i = dataset[i]
for j in range(len(generation)):
list_g_matrices[j].append(get_gi_of_a_data(data_i, generation[j], dimension))
# second calculate weights
list_w_matrices = []
for i in range(len(generation)):
list_w_matrices.append(calculate_weight_chromosome_i(list_g_matrices[i], y_star))
# third calculate Y matrix
list_y_matrices = []
for i in range(len(generation)):
list_y_matrices.append(calculate_y_out(list_g_matrices[i], list_w_matrices[i]))
# check what is running mode and then calculate corresponding error
list_evaluated = []
if running_mode == "Regression":
for i in range(len(generation)):
fitness = fitness_regression(list_y_matrices[i], y_star)
list_evaluated.append([generation[i], fitness])
elif running_mode == "Classification_2":
for i in range(len(generation)):
fitness = fitness_classification_2(list_y_matrices[i], y_star)
# m = (len(generation[i]) - 1) / (dimension + 1)
# fitness /= m
list_evaluated.append([generation[i], fitness[0]])
else:
for i in range(len(generation)):
fitness = fitness_classification_n(list_y_matrices[i], y_star)
list_evaluated.append([generation[i], fitness])
return list_evaluated, list_w_matrices, list_y_matrices, list_g_matrices
def get_gi_of_a_data(data, chromosome, dimension_size):
gi = []
for index_radius in range(dimension_size, len(chromosome) - 1, (dimension_size + 1)):
radius = chromosome[index_radius] ** 2
sum_data_dis_center = 0
index_data = 0
for index_center in range(index_radius - dimension_size, index_radius):
sum_data_dis_center += (data[index_data] - chromosome[index_center]) ** 2
index_data += 1
sum_data_dis_center = -sum_data_dis_center / radius
sum_data_dis_center = np.exp(sum_data_dis_center)
gi.append(sum_data_dis_center)
return gi
def calculate_weight_chromosome_i(gi, y_star):
g_new = np.array(gi)
g_new_transpose = g_new.transpose()
temp = np.dot(g_new_transpose, g_new)
temp = temp + 0.001 * np.identity(g_new_transpose.shape[0], dtype=float)
temp = np.linalg.inv(temp)
temp = np.dot(temp, g_new_transpose)
temp = np.dot(temp, y_star)
return temp
def calculate_y_out(gi, wi):
return np.dot(gi, wi)
def fitness_regression(y_out, y_star):
fitness = np.transpose(y_out - y_star)
fitness = np.dot(fitness, y_out - y_star)
fitness /= 2
fitness = 1 / fitness
return fitness
def fitness_classification_2(y_out, y_star):
fitness = 0
for i in range(len(y_out)):
fitness += np.abs(np.sign(y_out[i]) - int(y_star[i]))
fitness = fitness / (len(y_star))
fitness = 1 - fitness
return fitness
def fitness_classification_n(y_out, y_star):
fitness = 0
for i in range(len(y_out)):
delta = np.abs(y_out[i] - int(y_star[i]))
if delta > 0.5:
fitness += 1
fitness = fitness / (len(y_star))
fitness = 1 - fitness
return fitness
def select_based_on_q_tournament(generation, q, selection_size):
selected_chromosome = []
q = int(q)
no_need_return_back_selected = False
if len(generation) > selection_size:
no_need_return_back_selected = True
for i in range(selection_size):
q_selected = nd.sample(range(0, len(generation)), q)
fit_best = generation[q_selected[0]][1]
index_b = 0
best = generation[q_selected[0]]
for j in range(1, q):
if (generation[q_selected[j]][1] == best[1] and len(generation[q_selected[j]][0]) < len(best[0])) \
or (generation[q_selected[j]][1] > best[1]):
fit_best = generation[q_selected[j]][1]
index_b = j
best = generation[q_selected[j]]
selected_chromosome.append(best[0])
if no_need_return_back_selected:
generation.pop(q_selected[index_b])
return selected_chromosome
def select_and_evaluate(generation, q, selection_size, dataset_train_values, y_star, algorithm_mode):
selected_chromosome = []
q = int(q)
no_need_return_back_selected = False
if len(generation) > selection_size:
no_need_return_back_selected = True
for i in range(selection_size):
q_selected = nd.sample(range(0, len(generation)), q)
selected_to_going_evaluate = []
for j in range(len(q_selected)):
selected_to_going_evaluate.append(generation[q_selected[j]])
evaluated, t1, t2, t3 = evaluate_generation(dataset_train_values,
selected_to_going_evaluate,
y_star,
algorithm_mode)
fit_best = evaluated[0][1]
index_b = 0
best = evaluated[0]
for j in range(1, len(evaluated)):
if (evaluated[j][1] == best[1] and len(evaluated[j][0]) < len(best[0])) \
or (evaluated[j][1] > best[1]):
fit_best = evaluated[j][1]
index_b = j
best = evaluated[j]
selected_chromosome.append(best[0])
if no_need_return_back_selected:
generation.pop(q_selected[index_b])
return selected_chromosome
def get_final_result(dataset, chromosome, y_star, running_mode):
eval, \
list_w_matrices, \
list_y_matrices, \
list_g_matrices = evaluate_generation(dataset,
chromosome,
y_star,
running_mode)
index_best_chromosome = 0
# best_ch = eval[0][0]
best_fit_value = eval[0][1]
for i in range(len(eval)):
if eval[i][1] > best_fit_value:
best_fit_value = eval[i][1]
index_best_chromosome = i
# chromosome = best_ch
# # first calculate G matrix
# dimension = dataset.shape[1]
# g_matrix = []
# for i in range(dataset.shape[0]):
# data_i = dataset[i]
# g_matrix.append(get_gi_of_a_data(data_i, chromosome, dimension))
#
# # second calculate weights
# w_matrix = calculate_weight_chromosome_i(g_matrix, y_star)
#
# # third calculate Y matrix
# y_matrix = calculate_y_out(g_matrix, w_matrix)
return [list_y_matrices[index_best_chromosome],
eval[index_best_chromosome][1],
eval[index_best_chromosome][0],
list_w_matrices[index_best_chromosome],
list_g_matrices[index_best_chromosome]]
def print_algorithm_parameters(dataset_length,
initial_number_chromosomes,
min_length_chromosome,
max_length_chromosome,
max_sigma_mutation,
thread_number,
alg_mode):
print("Thread " + str(thread_number) + " started")
print("Algorithm mode: " + alg_mode)
print("Dataset size : " + str(dataset_length))
print("Initial generation size : " + str(initial_number_chromosomes))
print("Min Length of Chromosome : " + str(min_length_chromosome))
print("Max Length of Chromosome : " + str(max_length_chromosome))
print("Max Sigma in Mutation : " + str(max_sigma_mutation))
print("##############################")
def draw_result_classification(y_out,
y_star,
accuracy,
sample_size,
cluster_count,
data,
dataset_panda_v):
correct_d_1 = []
correct_d_2 = []
incorrect_d_1 = []
incorrect_d_2 = []
for i in range(len(data)):
if cluster_count == 2:
if np.sign(y_out[i]) == y_star[i]:
correct_d_1.append(data[i][0])
correct_d_2.append(data[i][1])
else:
incorrect_d_1.append(data[i][0])
incorrect_d_2.append(data[i][1])
else:
if np.round(y_out[i]) == y_star[i]:
correct_d_1.append(data[i][0])
correct_d_2.append(data[i][1])
else:
incorrect_d_1.append(data[i][0])
incorrect_d_2.append(data[i][1])
plt.plot(correct_d_1, correct_d_2, 'g.', linewidth=4)
plt.plot(incorrect_d_1, incorrect_d_2, 'r.', linewidth=2)
plt.title('asAccuracy: ' + str(accuracy) + '% | ' +
' Data size: ' + str(sample_size) + ' | ' +
' Number of Clusters: ' + str(cluster_count))
plt.legend(('correct', 'incorrect'), loc='upper right')
plt.show()
def draw_result_regression(y_out,
y_star,
accuracy,
sample_size):
plt.plot(y_star, '-o', label='real')
plt.plot(y_out, '-', label='RBF')
plt.legend()
plt.title(' Dataset size: ' + str(sample_size) + ' | ' +
' Accuracy: ' + str(accuracy))
plt.tight_layout()
plt.show()
def draw_centers(chromosome, dimensions):
ax = plt.gca()
for j in range(dimensions, len(chromosome) - 1, dimensions + 1):
r = float(chromosome[j])
c = []
for k in range(j - dimensions, j):
c.append(chromosome[k])
cc = plt.Circle(c, r, facecolor='none', edgecolor='black')
ax.add_patch(cc)
plt.axis('scaled')
plt.show()