-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
276 lines (238 loc) · 10.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import os
from config import *
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib.pyplot as plt
from download import download_fashion_mnist
def load_brain(mode='train'):
"""
load the BRAIN data
:param mode: train or test
:return: train and validation images and labels in train mode, test images and labels in test mode
x: [#images, width, height, n_channels]
y: [#images, #classes=10] (one_hot_encoded)
"""
if mode == 'train':
return x_train, y_train, x_valid, y_valid
elif mode == 'test':
return x_test, y_test
def load_mnist(mode='train'):
"""
load the MNIST data
:param mode: train or test
:return: train and validation images and labels in train mode, test images and labels in test mode
x: [#images, width, height, n_channels]
y: [#images, #classes=10] (one_hot_encoded)
"""
mnist = input_data.read_data_sets("data/mnist", one_hot=True)
if mode == 'train':
x_train, y_train, x_valid, y_valid = mnist.train.images, mnist.train.labels, \
mnist.validation.images, mnist.validation.labels
x_train = x_train.reshape((-1, args.img_w, args.img_h, args.n_ch)).astype(np.float32)
x_valid = x_valid.reshape((-1, args.img_w, args.img_h, args.n_ch)).astype(np.float32)
return x_train, y_train, x_valid, y_valid
elif mode == 'test':
x_test, y_test = mnist.test.images, mnist.test.labels
x_test = x_test.reshape((-1, args.img_w, args.img_h, args.n_ch)).astype(np.float32)
return x_test, y_test
def load_fashion_mnist(mode='train'):
path = os.path.join('data', 'fashion-mnist')
download_fashion_mnist(save_to=path)
if mode == 'train':
fd = open(os.path.join(path, 'train-images-idx3-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
x = loaded[16:].reshape((60000, 28, 28, 1)).astype(np.float32)
fd = open(os.path.join(path, 'train-labels-idx1-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
y = loaded[8:].reshape(60000).astype(np.int32)
x_train = x[:55000] / 255.
y_train = y[:55000]
y_train = (np.arange(args.n_cls) == y_train[:, None]).astype(np.float32)
x_valid = x[55000:, ] / 255.
y_valid = y[55000:]
y_valid = (np.arange(args.n_cls) == y_valid[:, None]).astype(np.float32)
return x_train, y_train, x_valid, y_valid
elif mode == 'test':
fd = open(os.path.join(path, 't10k-images-idx3-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
x_test = loaded[16:].reshape((10000, 28, 28, 1)).astype(np.float)
fd = open(os.path.join(path, 't10k-labels-idx1-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
y_test = loaded[8:].reshape(10000).astype(np.int32)
y_test = (np.arange(args.n_cls) == y_test[:, None]).astype(np.float32)
return x_test / 255., y_test
def load_data(dataset, mode='train'):
if dataset == 'mnist':
return load_mnist(mode)
elif dataset == 'fashion-mnist':
return load_fashion_mnist(mode)
else:
raise Exception('Invalid dataset, please check the name of dataset:', dataset)
def randomize(x, y):
""" Randomizes the order of data samples and their corresponding labels"""
permutation = np.random.permutation(y.shape[0])
shuffled_x = x[permutation, :, :, :]
shuffled_y = y[permutation]
return shuffled_x, shuffled_y
def get_next_batch(x, y, start, end):
"""
Fetch the next batch of input images and labels
:param x: all input images
:param y: all labels
:param start: first image number
:param end: last image number
:return: batch of images and their corresponding labels
"""
x_batch = x[start:end]
y_batch = y[start:end]
return x_batch, y_batch
def save_to():
"""
Creating the handles for saving the results in a .csv file
:return:
"""
if not os.path.exists(args.results):
os.mkdir(args.results)
if not os.path.exists(args.results + args.dataset):
os.mkdir(args.results + args.dataset)
if args.mode == 'train':
train_path = args.results + args.dataset + '/' + 'train.csv'
val_path = args.results + args.dataset + '/' + 'validation.csv'
if os.path.exists(train_path):
os.remove(train_path)
if os.path.exists(val_path):
os.remove(val_path)
f_train = open(train_path, 'w')
f_train.write('step,accuracy,loss\n')
f_val = open(val_path, 'w')
f_val.write('epoch,accuracy,loss\n')
return f_train, f_val
else:
test_path = args.results + args.dataset + '/test.csv'
if os.path.exists(test_path):
os.remove(test_path)
f_test = open(test_path, 'w')
f_test.write('accuracy,loss\n')
return f_test
def load_and_save_to(start_epoch, num_train_batch):
"""
Loads the saved .csv files to continue training the model
:return: the handles for saving into files and the minimum validation loss so far
"""
train_path = args.results + args.dataset + '/' + 'train.csv'
val_path = args.results + args.dataset + '/' + 'validation.csv'
# finding the minimum validation loss so far
f_ = open(val_path, 'r')
lines = f_.readlines()
a = np.genfromtxt(lines[-1:], delimiter=',')
min_loss = np.min(a[1:, 2])
# loading the .csv file to continue recording the values
f_train = open(train_path, 'a')
f_val = open(val_path, 'a')
return f_train, f_val, min_loss
def evaluate(sess, model, x, y):
acc_all = loss_all = pred_all = np.array([])
num_batch = int(y.shape[0] / args.batch_size)
for i in range(num_batch):
start_val = i * args.batch_size
end_val = start_val + args.batch_size
x_b, y_b = get_next_batch(x, y, start_val, end_val)
acc_batch, loss_batch, pred_batch = sess.run([model.accuracy, model.total_loss, model.y_pred],
feed_dict={model.X: x_b, model.Y: y_b})
pred_all = np.append(pred_all, pred_batch)
acc_all = np.append(acc_all, acc_batch)
loss_all = np.append(loss_all, loss_batch)
return np.mean(acc_all), np.mean(loss_all), pred_all
def reconstruct_plot(x, y, x_reconst, y_pred, n_samples):
fashion_mnist_labels = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
sample_images = x.reshape(-1, args.img_w, args.img_h)
reconst = x_reconst.reshape([-1, args.img_w, args.img_h])
fig = plt.figure(figsize=(n_samples * 2, 3))
for index in range(n_samples):
plt.subplot(1, n_samples, index + 1)
plt.imshow(sample_images[index], cmap="binary")
if args.dataset == 'mnist':
plt.title("Label:" + str(np.argmax(y[index])))
elif args.dataset == 'fashion-mnist':
plt.title("Label:" + fashion_mnist_labels[np.argmax(y[index])])
plt.axis("off")
fig.savefig(args.results + args.dataset + '/' + 'input_images.png')
plt.show()
fig = plt.figure(figsize=(n_samples * 2, 3))
for index in range(n_samples):
plt.subplot(1, n_samples, index + 1)
plt.imshow(reconst[index], cmap="binary")
if args.dataset == 'mnist':
plt.title("Predicted:" + str(y_pred[index]))
elif args.dataset == 'fashion-mnist':
plt.title("Pred:" + fashion_mnist_labels[y_pred[index]])
plt.axis("off")
fig.savefig(args.results + args.dataset + '/' + 'reconstructed_images.png')
plt.show()
def plot_adv_samples(x_orig, x_adv, y_true, y_pred_adv, y_pred, max_iter, epsilon, n_samples_per_class=3):
idx = np.zeros((n_samples_per_class, args.n_cls)).astype(int)
count = np.zeros(args.n_cls).astype(int)
for i in range(y_pred_adv.shape[0]):
# To plot only images classified correctly before, but are mistakenly classified
# after the adversary attack
if y_true[i] != y_pred_adv[i] and y_true[i] == y_pred[i] and count[y_true[i]] < n_samples_per_class:
idx[count[y_true[i]], y_true[i]] = i
count[y_true[i]] += 1
else:
continue
idx = idx.reshape(-1, )
fig = plt.figure(figsize=(10, n_samples_per_class * 1.2))
for index in range(idx.size):
plt.subplot(n_samples_per_class, args.n_cls, index + 1)
plt.imshow(x_adv[idx[index]].reshape(args.img_w, args.img_h), cmap="gray")
plt.title(str(y_pred_adv[idx[index]]))
plt.xticks([])
plt.yticks([])
fig.savefig(args.results + args.dataset + '/' +
'adv_attack_Xadv_iter_{0}_eps_{1}.png'.format(str(max_iter), str(epsilon)))
plt.close(fig)
fig = plt.figure(figsize=(10, n_samples_per_class * 1.2))
for index in range(idx.size):
plt.subplot(n_samples_per_class, args.n_cls, index + 1)
plt.imshow(x_orig[idx[index]].reshape(args.img_w, args.img_h), cmap="gray")
plt.xticks([])
plt.yticks([])
fig.savefig(args.results + args.dataset + '/' +
'adv_attack_Xorig_iter_{0}_eps_{1}.png'.format(str(max_iter), str(epsilon)))
plt.close(fig)
fig = plt.figure(figsize=(10, n_samples_per_class * 1.2))
for index in range(idx.size):
plt.subplot(n_samples_per_class, args.n_cls, index + 1)
plt.imshow((x_adv[idx[index]] - x_orig[idx[index]]).reshape(args.img_w, args.img_h), cmap="gray")
plt.title(str(int(y_pred[idx[index]])) + '->' + str(y_pred_adv[idx[index]]))
plt.xticks([])
plt.yticks([])
fig.savefig(args.results + args.dataset + '/' +
'adv_attack_difference_iter_{0}_eps_{1}.png'.format(str(max_iter), str(epsilon)))
plt.close(fig)
def plot_adv_curves(acc, loss, max_iter, epsilon):
fig, axs = plt.subplots(nrows=1, ncols=2, sharex=True)
width, height = 10, 4
fig.set_size_inches(width, height)
ax = axs[0]
ax.plot(epsilon, acc, '-o', color='k')
ax.set_xlim([epsilon[0], epsilon[-1]])
ax.set_ylim([0, 1])
ax.set_xlabel('Epsilon')
ax.set_ylabel('Accuracy')
ax.grid(color='lightgray', linestyle='-', linewidth=0.3)
ax = axs[1]
ax.plot(epsilon, loss, '-o', color='k')
ax.set_xlim([epsilon[0], epsilon[-1]])
ax.set_xlabel('Epsilon')
ax.set_ylabel('Loss')
ax.grid(color='lightgray', linestyle='-', linewidth=0.3)
plt.rc('xtick', labelsize=15)
plt.rc('ytick', labelsize=15)
plt.rc('axes', labelsize=15)
fig.subplots_adjust(left=0.1, bottom=0.15, right=0.95, top=0.95, wspace=0.3, hspace=None)
plt.show()
fig.savefig(args.results + args.dataset + '/' +
'adv_attack_curves_iter_{0}.png'.format(str(max_iter)))