-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunc_ttr.m
64 lines (48 loc) · 2.42 KB
/
func_ttr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
function [out1,out2,out3] = func_ttr2(flag,s,xx,ep,e,sigma,rho,kappa,beta,rnstst,elb)
% FUNCTION FILE FOR TRUNCATED TAYLOR RULE
% Program for the article "Optimal and Simple Monetary Policy Rules
% with Zero Floor on the Nominal Interest Rate",
% International Journal of Central Banking, Vol. 4(2), pages 73-127, June
% (C) Anton Nakov
rn = s(:,1);
n = length(rn);
if ~isempty(ep)
E_pi = ep(:,1);
E_x = ep(:,2);
end
if ~isempty(xx)
pi = xx(:,1);
x = xx(:,2);
end
switch flag
case 'b'; % BOUND FUNCTION
out1(:,1) = -inf*ones(n,1); % pi low
out1(:,2) = -inf*ones(n,1); % x low
out2(:,1) = inf*ones(n,1); % pi high
out2(:,2) = inf*ones(n,1); % x high
case 'f'; % EQUILIBRIUM FUNCTION
i = taylor(rnstst, pi, x, elb);
out1(:,1) = pi - (beta*(E_pi) + kappa*x); % f1 (NKPC)
out1(:,2) = x - E_x + 1/sigma*(i - E_pi - rn); % f2 (NKIS)
out2(:,1,1) = (ones(n,1)); % f1_pi
out2(:,1,2) = -kappa/ones(n,1); % f1_x
out2(:,2,1) = zeros(n,1); % f2_pi
out2(:,2,2) = ones(n,1); % f2_x
out3(:,1,1) = -beta/ones(n,1); % f1E_pi
out3(:,1,2) = zeros(n,1); % f1E_x
out3(:,2,1) = -ones(n,1)/sigma; % f2E_pi
out3(:,2,2) = -ones(n,1); % f2E_x
case 'g'; % STATE TRANSITION FUNCTION
out1(:,1) = rho*rn + (1-rho)*rnstst + e; % g1
out2(:,1,1) = zeros(n,1); % g1_pi
out2(:,1,2) = zeros(n,1); % g1_x
case 'h'; % EXPECTATION FUNCTION
out1(:,1) = pi; % E(pi)
out1(:,2) = x; % E(x)
out2(:,1,1) = ones(n,1); % E(pi)_pi
out2(:,1,2) = zeros(n,1); % E(pi)_x
out2(:,2,1) = zeros(n,1); % E(x)_pi
out2(:,2,2) = ones(n,1); % E(x)_x
out3(:,1,1) = zeros(n,1); % E(pi)_rn
out3(:,2,1) = zeros(n,1); % E(x)_rn
end